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Abstract

Objectives Mass shootings seemingly lie outside the grasp of explanation and prediction, 

because they are statistical outliers—in terms of their frequency and severity—within the 

broader context of crime and violence. Innovative scholarship has developed procedures to 

estimate the future likelihood of rare catastrophic events such as earthquakes that exceed 

7.0 on the Richter scale or terrorist attacks that are similar in magnitude to 9/11.

Methods Because the frequency and severity of mass public shootings follow a distribu-

tion resembling these previously studied rare catastrophic event classes, we utilized similar 

procedures to forecast the future severity of these incidents within the United States.

Results Using a dataset containing 156 mass public shootings that took place in the U.S. between 

1976 and 2018, we forecast the future probability of attacks reaching each of a variety of sever-

ity levels in terms of the number of gunfire victims killed and wounded across three different 

choices of tail model, three different scenarios for future incident rates, and other parameters. 

Using a set of mid-range parameters, we find that the probability of an event as deadly as the 

2017 massacre in Las Vegas occurring before 2040 is 35% (90% uncertainty interval [8, 72]) and 

we characterize how this projection varies substantially with choice of modeling parameters.

Conclusions Our results suggest an uncertain, but concerning, future risk of large-scale 

mass public shootings, while also illustrating how such forecasts depend on assumptions 

made about the tail location and other details of the severity distribution model.
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Introduction

From the 1903 mass murder carried out by Gilbert Twigg in Winfield, Kansas to the 2017 

massacre in Las Vegas,1 incidents in which victims are indiscriminately gunned down in a 

public place have frequently engendered widespread fear, anger and concern. Particularly 

troubling is the seemingly random nature of many of these attacks, targeting anyone who 

happens to be in the wrong place at the wrong time. Amid the onslaught of news cover-

age in the wake of these tragedies, the media often attempt to situate the incident within 

a broader context by (1) providing a “profile” of the type of individual who commits this 

sort of violence, (2) discussing whether the event is indicative of a larger, overall increase 

in this type of crime, and (3) identifying what can be done to reduce the incidence or sever-

ity of future attacks. During the late 1980s and early 1990s, a string of high-profile shoot-

ing rampages led to assertions that mass murder was on the rise and had become “com-

monplace” in the United States (Duwe 2007). More recently, massacres in places such as 

Orlando, San Bernardino and El Paso2 have prompted claims that mass shootings have 

grown more prevalent and are now “routine” (Cohen et al. 2014; Korte 2016).

Even though it has been assumed that gun-related mass killings have occurred with 

greater regularity at various times since the 1980s, it has also been recognized that these 

events remain relatively rare (Duwe 2007; Fox et al. 2019). This apparent paradox—rare 

yet “routine”—likely reflects, in part, the outsized impact that catastrophic mass murders 

have on perceptions of public safety. Nevertheless, because gun-related massacres are rela-

tively infrequent, prospectively identifying who might use a firearm to kill a large number 

of victims in public is exceedingly difficult, if not impossible. Fox and Levin (2011), for 

example, likened predicting who will commit mass murder to finding a needle in a large 

haystack. Many individuals fit the profile of a mass shooter, yet very few will actually turn 

their anger into action.

Given the infrequency and apparent randomness with which firearm-related massacres 

occur, it has been reasonable to assume these attacks lie beyond the realm of prediction. 

This also appears to be true with respect to forecasting, which focuses on the probabil-

ity and severity of future events. Yet, research in other fields such as seismology, forestry, 

hydrology, natural disaster insurance, and terrorism has demonstrated that it is possible to 

develop valid estimates of the future likelihood of rare catastrophic events (Clauset and 

Woodard 2013). In particular, this literature has shown that such phenomena follow heavy-

tailed distributions such as power laws in which most events are relatively small or low 

severity, while a small number of highly severe events (with sizes several times the mean) 

do occur. Applying models appropriate to these data to the frequency and severity of mass 

shootings, we attempt to forecast the probability of catastrophic events occurring in the 

future in the United States. Such forecasts are important for policymakers and practition-

ers to better understand the urgency with which continued efforts to reduce such events is 

1 Twigg committed suicide after fatally shooting 9 victims and wounding 25 more on August 13, 1903, in 

Winfield, Kansas. A total of 60 victims were fatally shot in the Las Vegas massacre and another 411 were 

injured by gunfire.
2 There were 102 victims shot (53 fatally) in Orlando, 38 victims shot (14 fatally) in San Bernardino, and 

46 victims shot (23 fatally) in El Paso.
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warranted, given budget constraints. If forecasts suggest that severe mass public shootings 

are not likely to occur in the future, resources may be better utilized elsewhere. Moreover, 

the modeling and assumptions used to develop these forecasts may also advance our under-

standing of the underlying social mechanisms that increase or decrease the likelihood of 

large events.

As with other types of violence such as military conflict (Friedman 2014), terrorism 

(Clauset et al. 2007) or even homicide in general, the number of victims killed or injured 

in mass shootings is not normally distributed. For example, existing definitions have placed 

the fatal victim threshold for mass murder classification at either three (Dietz 1986; Hol-

mes and Holmes 1992; Petee et al. 1997) or four (Duwe 2007; Fox and Levin 2011; Krause 

and Richardson 2015; Taylor 2016). Under either criterion, the vast majority of inci-

dents classified as mass killings would have three or four fatal victims while a small (but 

nonzero) amount would have much larger numbers of victims (e.g., 10 or more). As such, 

the number of victims in mass shootings follows a heavy-tail distribution.

In this study, we use a novel strategy—at least within criminology—to estimate the risk 

of high-casualty mass public shootings over a variety of forecast horizons. More specifi-

cally, we use three distributions (Pareto, Weibull, and lognormal) to estimate the future 

probability of catastrophic mass public shootings in the United States. In doing so, we 

address several important questions. What is the probability that a mass public shooting as 

catastrophic as the Las Vegas massacre will take place? Similarly, what is the probability 

of an even more catastrophic mass public shooting occurring in the future?

Defining and Describing Mass Murder, Mass Shootings, and Mass 
Public Shootings

Given the mass confusion over the phrase “mass shooting” (Fox and Levin 2015), it is 

important to clarify what we mean when we use terms such as “mass murder,” “mass 

shooting,” or “mass public shooting.” A mass murder is an incident in which four or more 

victims are killed—with any type of weapon—within a 24-h period (Duwe 2007; Fox and 

Levin 2011). A mass shooting is a mass murder carried out with a firearm; in other words, 

a mass shooting is any gun-related mass murder (Krause and Richardson 2015). A mass 

shooting, as we have defined it, would thus include incidents such as the 1890 Wounded 

Knee Massacre, the 1929 St. Valentine’s Day Massacre, and recent mass murders in El 

Paso and Dayton.

As research has shown, however, nearly three-fourths of the mass shootings that have 

taken place in the United States since 1976 were either familicides or felony-related massa-

cres (Duwe 2020). Familicides most often involve a male head of the household killing his 

partner (i.e., spouse, ex-spouse, or fiancée), their children, relatives, or some combination 

of these. Familicides almost invariably take place within the privacy of a residential set-

ting, and the offender commits suicide in about two-thirds of these cases (Duwe 2007). In 

these cases, the targets are generally not viewed as random.

Felony-related massacres, on the other hand, are mass murders committed in connec-

tion with other crimes such as robbery, burglary, gang “turf wars” or contract killings (i.e., 

mob hits). In contrast to familicides, which are almost always carried out by a lone assail-

ant, felony-related massacres often involve multiple offenders. While most mass killings 

are committed for the sake of revenge or, in some cases of familicide, out of a warped 

form of love (i.e., the wife and children are "better off dead"), felony-related massacres 
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are typically more instrumental insofar as the victims are killed as a means to an end (i.e., 

killing eyewitnesses to a robbery seemingly offers a greater chance of evading detection). 

Because the violence in felony-related massacres tends to be less expressive compared to 

other mass killings, the perpetrators rarely commit suicide (Duwe 2004).

Compared to familicides and felony-related massacres, mass murders that involve an 

offender using a gun, especially an assault weapon, to shoot a relatively large number of 

strangers in a public location are especially newsworthy (Duwe 2000). As defined here, 

these mass public shootings occur in the absence of other criminal activity (e.g., robber-

ies, drug deals, gang “turf wars”, etc.) in which a gun was used to kill four or more vic-

tims at a public location within a 24-h period (Duwe et al. 2002). We also exclude from 

our mass public shooting classification any cases occurring in connection with military 

conflict or collective violence. While this definition would not classify cases such as the 

St. Valentine’s Day Massacre or the Wounded Knee Massacre as mass public shootings, 

it would include incidents such as the 1966 mass murder carried out at the University of 

Texas in Austin, the 1991 Luby’s cafeteria mass killing, the 1999 Columbine massacre, 

the 2007 Virginia Tech shooting and, most recently, the 2017 Las Vegas massacre. Mass 

public shootings can thus be seen not only as a type of mass murder, but also as a specific 

type of mass shooting.

Mass public shootings often dominate the news cycle because they involve, on average, 

a greater number of killed and injured victims than other mass murders (Duwe 2007), and 

the “body count” is the strongest predictor of the extent to which mass killings get reported 

by the news media (Duwe 2000). That mass public shooters are more likely than other mass 

murderers to kill strangers connotes an indiscriminate selection of victims, which increases 

their newsworthiness by conveying the impression that anyone could be a victim of a mass 

killing (Duwe 2000). Mass public shootings are also, by their very definition, highly vis-

ible acts of violence. Duwe (2000, p. 391) explains that because publicly occurring mass 

murders usually involve people who witnessed and survived the attack, these incidents fre-

quently give the news media the means to “deliver a fascinating firsthand account to the 

audience, allowing them to vicariously experience the horror of the event.” More so than 

other mass murders, mass public shootings tend to be exceptionally newsworthy because 

they are “riveting, emotionally evocative incidents” that epitomize “news as theater—a 

morality play involving pure, innocent victims and offenders who seemingly went ‘berserk’ 

in a public setting” (Duwe 2000, p. 391).

Mass public shootings are rare within the context of mass murder, which is itself a rare 

form of violence. For example, more than 1,000 mass murders have taken place in the 

United States since 1976, which amounts to an average of 28 per year (Duwe 2016). Dur-

ing the same period of time in the U.S., there have been, on average, approximately 14,200 

homicides annually. Given that more than 95 percent of all homicides are single-victim 

incidents (Cooper and Smith 2011), mass murders make up a meager 0.2 percent of all 

homicides while mass public shootings account for only 0.03 percent of all homicide inci-

dents annually.3

3 These figures represent the percentage of homicides that involve 4 or more victims killed in a single inci-

dent. Of course, mass killings claim a disproportionately large number of lives as compared to most other 

fatal assaults. In terms of victimization, mass killings and mass public shootings in particular still account 

for a rather small share of all homicide victims—about one percent for mass killings and one-sixth percent 

for mass public shootings.
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Forecasting the Severity of Rare Events

Forecasting and prediction is a core part of criminological work and becoming increasingly 

sophisticated. In corrections, forecasting prison populations remains a vital exercise for 

budgeting and resource allocation (McDonald et al. 2019). In policing, identifying future 

crime hot spots helps assist officers in reducing crime by being proactive (Mohler et  al. 

2015; Perry 2013) though some worry about the possibility that such tools may further 

inequities in society by distilling real-world issues down to statistical probabilities (Meijer 

and Wessels 2019). In other words, if data used to inform such predictions are infected with 

bias, the predictions will be as well (Richardson et al. 2019). If data are as comprehensive 

as possible, however, this seems less of a concern. Illustrating the increasing interest in 

crime estimation, the National Institute of Justice hosted a competition in 2017 seeking 

the best crime forecasting models using a variety of tools.4 Research has indicated that the 

sample size of crime counts plays a major role in the accuracy of forecasting efforts (Gorr 

et  al. 2003). Thus, the relatively infrequency of mass public shooting events seemingly 

poses a problem for traditional forecasting methods.

Recently, scholars have developed models using heavy tailed distributions to forecast 

the future size and severity of rare events such as severe earthquakes and high fatality ter-

rorist attacks. As described by Clauset and Woodard (2013), data comprised of rare, high 

severity events means focusing on the upper tail of a distribution (e.g., extreme events). 

Research has shown that certain rare phenomena follow simple (e.g., three or fewer param-

eter) distributions, including city size, earthquake severity, and power outages (Clauset 

et al. 2009). Clauset and Woodard (2013), for example, utilized a power law distribution 

to arrive at a probability of 0.299 of a terroristic event the size of 9/11 (2749 deaths) over 

the years 1968–2007. Other distributions used by Clauset and Woodard (2013) include 

stretched exponential and lognormal, which provide varying estimates of the probability of 

such a catastrophe occurring.

Data and Method

Our data on mass public shootings were primarily drawn from the study by Duwe (2020), 

who relied on both the Federal Bureau of Investigation’s Supplementary Homicide Reports 

(SHR) and news reports as data sources on mass public shootings that occurred in the U.S. 

between 1976 and 2018. The SHR contain incident, victim, and offender information on 

most murders committed in the United States. It did not become a valuable source of homi-

cide data, however, until it underwent a major revision in 1976 (Riedel 1999). While the 

SHR is the most comprehensive official source of U.S. homicide data, it has several nota-

ble limitations. First, because the SHR is a voluntary program involving law enforcement 

agencies across the country, an estimated eight percent of all homicides are not reported 

(Fox 2000). Second, the SHR records frequently contain a number of coding errors (Duwe 

2000; Wiersema et al. 2000). For example, Duwe (2000) found a total of 55 cases in the 

SHR data where victims were coded twice for the same incident, wounded victims were 

counted as fatalities, more than one law enforcement agency reported the same homi-

cide, and offenders were counted as victims in murder-suicides. Finally, the SHR does not 

4 https:// nij. gov/ fundi ng/ pages/ fy16- crime- forec asting- chall enge. aspx.

https://nij.gov/funding/pages/fy16-crime-forecasting-challenge.aspx
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include important information such as the type of location (e.g., residence, school, church, 

etc.) where the homicide took place or the number of victims wounded.

Compared to the SHR, news accounts usually provide more detailed information, 

including the location where the homicide occurred (e.g., private residence, school, work-

place, etc.) and whether any victims were injured. Moreover, given that some murders are 

not included in the SHR, the use of news reports can help minimize the underreporting 

problem. Still, using news coverage as the sole source of data on mass shootings (or mass 

murders in general) has its own limitations, too. Even though the vast majority of mass 

murders, including mass shootings, are reported by the press, many receive limited, mostly 

local coverage (Duwe 2000; Overberg et al. 2013). Successful identification of mass pub-

lic shootings that have taken place is therefore highly dependent on the news media data-

base being used, the news organizations included within the database, and the search terms 

used. Indeed, not all cases are described by the news media as “mass shootings” or “mass 

murder,” making it necessary to use expanded search terms such as “quadruple shooting,” 

“quintuple homicide,” and so on. Moreover, news coverage is generally less accessible for 

older incidents that occurred farther back in time.

After relying on the SHR to identify when and where gun-related mass murders (i.e., 

incidents in which four or more victims were killed with a gun within a 24-h period) 

occurred in the U.S., Duwe (2020) searched online newspaper databases to collect addi-

tional information not included in the SHR, such as the number of injured victims and the 

specific location where the incident took place. As a result of using this triangulated data 

collection strategy, which was also adopted by USA Today (Overberg et al. 2013) and the 

Congressional Research Service (Krause and Richardson 2015), Duwe (2020) was able to 

correct errors in the SHR data while also identifying cases that were either not reported 

to the SHR or were unlikely to be captured through sole reliance on news coverage. In 

addition, Duwe (2020) consulted unpublished mass shooting datasets from Brot (2016) and 

the Congressional Research Service (2014), which added a handful of cases to his dataset. 

Defining mass public shootings as gun-related mass murders that took place at a public 

location in the absence of other criminal activity (e.g., robberies, drug deals, gang “turf 

wars”, etc.), military conflict, or collective violence, Duwe (2020) identified 158 cases that 

occurred in the U.S. between 1976 and 2018.

To help ensure we captured every mass public shooting that took place in the U.S. dur-

ing this 43-year period, we also examined publicly available datasets such as those pub-

lished by Louis Klarevas (Klarevas et  al. 2019); USA Today (2018); Washington Post 

(Berkowitz and Alcantara 2019); Stanford University (2020); Mother Jones (2020); Eve-

rytown for Gun Safety (2020); and FBI Active Shooter Events (Federal Bureau of Inves-

tigation 2020). Moreover, we conducted a consensus review to determine whether cases 

qualified as a mass public shooting by our operational definition. More specifically, three 

of the authors for this study reviewed whether cases met the following criteria: (1) at least 

four of all victims were killed by gunfire; (2) at least four of the victims were killed in a 

public place or else at least half of all fatalities occurred in a public place; (3) the shooting 

did not occur in a private residence, although those that occurred in a non-private residence 

(e.g., group home or motel) were retained; and (4) the attack occurred in the absence of 

other criminal activity, military conflict, or collective violence.5 If all three authors agreed 

5 While familicides almost invariably occur in a private residence, the following three cases in our dataset 

involved offenders who killed their family members with a gun in a public location: (1) Elyria, Ohio in 

1982, (2) Oakley, Idaho in 1984, and (3) Harrodsburg, Kentucky in 1991.
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these criteria had been satisfied, the incident was included in this study as a mass public 

shooting. If there was any disagreement, the coders discussed the case until they reached 

agreement on the classification.

For each case, the coders classified the incident as “yes,” “no,” or “maybe.” Of the 188 

possible cases identified, all three coders agreed on the classification being “yes” or being 

“no” for 175 (93.1%) of the cases. In an additional three cases, two coders agreed on the 

classification and the third was not sure. There was disagreement or uncertainty for 10 

cases. The inter-rater reliability was assessed using Fleiss kappa, an extension of Cohen’s 

kappa for more than two raters (Fleiss 1971). Fleiss kappa was 0.82, which indicates very 

good agreement between coders (Altman 1999). Overall, our mass public shooting dataset 

contains 156 incidents occurring between 1976 and 2018 that involved 2,360 victims who 

were shot, of whom 1,092 were killed (please see “Appendix A” for a list of the 156 cases).

Forecast Parameters

We estimated the probability of future catastrophic mass shootings over multiple fore-

cast windows. In particular, we developed forecasts over periods of 5 years, 10 years, and 

20 years. We constructed estimates using several different thresholds measuring the sever-

ity of the attack. Along with using the specific number of victims who were killed (60) 

and shot (471) in the Las Vegas massacre, we estimated the future likelihood of more cat-

astrophic mass public shootings with larger numbers of victims killed (75 and 100) and 

shot (500 and 1,000). Finally, we developed forecasts based on several different assump-

tions about future trends in the prevalence of mass public shootings. Following Clauset and 

Woodard (2013), we created three sets of forecasts in which we assumed the future rate 

of mass shootings would be consistent with (1) average historical rates (“status quo”), (2) 

higher historical rates (“pessimistic”), and (3) lower historical rates (“optimistic”).

To determine the future trend assumptions for mass public shootings, we analyzed data 

on the frequency and severity (victims killed and total victims shot) of these incidents over 

the 1976–2018 period. Given that the U.S. population was more than 100 million higher 

at the end of our study period (326 million in 2018) than it was at the beginning (214 

million in 1976), we present the incidence and severity data on a per capita basis. Rather 

than using the conventional per 100,000 rate, we use a rate of 100 million due to the rar-

ity of mass public shootings. In doing so, our forecasts assume that population size has an 

influence on the incidence of mass public shootings.6 We model the projected incidence 

rate as a function of severity in two separate components: (1) prevalence over time and (2) 

severity distribution. Because the first component is expected to be population dependent, 

6 While some may question this assumption, there is a temporal and spatial relationship between popula-

tion size and the prevalence of mass public shootings. The longer-term historical evidence has shown that 

the frequency of mass public shootings has, along with the size of the U.S. population, increased since the 

beginning of the twentieth century (Duwe 2016). In addition, the data presented in “Appendix A” reveal 

that roughly one-third of the mass public shootings have taken place in California, Florida, and Texas, three 

of the most populous states that account for 27 percent of the U.S. population (U.S. Census Bureau 2020). 

Further, in a recent study that examined the impact of state gun laws on mass public shootings, Siegel et al. 

(2020) found that state population size had a significant, positive effect on both the incidence and severity 

of shootings during the 1976–2018 period. More broadly, our assumption that the incidence of mass public 

shootings scales with population size also aligns with the long-held recognition across a wide variety of 

disciplines that per capita measures of social phenomena, including crime, are needed to account for the 

influence of population size.
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we model it on a per capita basis and use Census projections. Given that the second com-

ponent is not expected to be population dependent, we do not model it as such. Consistent 

with the different forecast windows we use, we also present the data in terms of 5-year, 

10-year, and 20-year moving averages.

Trends in the Prevalence and Severity of Mass Public Shootings

As shown in Table 1, 156 mass public shootings occurred between 1976 and 2018, which 

amounts to an average of nearly 4 mass shooting events per year and an annual rate of 1.30 

mass shooting events per 100 million. For each incidence and severity measure, we bolded 

the highest value and bolded and underlined the lowest value. The “N” and “Rate” val-

ues were bolded and underlined for 1979 because it was the only year during the 43-year 

period in which a mass public shooting did not take place. On the other hand, the “N” and 

“Rate” values were bolded for 2018 because it had the most incidents (10) and the highest 

annual rate (3.06).

As reflected in Fig. 1, the trend data show the 1986–1990 period had the lowest five-

year average (0.73). Meanwhile, the 1978–1987 period had the smallest ten-year average 

(0.95). The highest rates, on the other hand, have generally been observed more recently. 

For example, the 2006–2010 period had the highest five-year average (1.77), whereas the 

most recent 10- and 20-year periods have had the highest average rates.

The trend data for the number of victims killed and shot further indicate that mass 

public shootings have recently increased in severity. Due mainly to the Las Vegas mas-

sacre 2017 not only had the largest total number of victims killed (108) and shot (563), 

but it also had the highest rate of victims killed (33.22) and shot (173.15) per 100 million. 

Similarly, the most recent five-year (2014–2018), ten-year (2009–2018), and twenty-year 

(1999–2018) periods had the highest average rates for victims killed and shot.

Forecast Assumptions

In Table 2, we present the assumptions used in forecasting trends in the prevalence of mass 

public shootings. As noted above, we developed forecasts across multiple time windows for 

three different scenarios—status quo, pessimistic, and optimistic. To generate the antici-

pated number of incidents for each forecast, we relied on the moving averages presented in 

Table 1 as our minimum (i.e., optimistic), mean (i.e., status quo), and maximum (pessimis-

tic) assumptions. As such, our assumptions about future trends in the prevalence of mass 

public shootings are empirically grounded in the historical data.

To convert the rate averages from Table 1 into the anticipated number of incidents for 

each forecast horizon, we relied on a U.S. Census Bureau projection of the total U.S. popu-

lation from 2019 to 2060. For our purposes, however, we focused only on the annual pro-

jections through 2039. These data indicate the U.S. population is expected to increase from 

326 million in 2018 to about 372 million by the end of 2039. We then calculated the antici-

pated future number of cases each year based on the projected size of the U.S. population 

and the average rates (per 100 million) shown earlier in Table 1.

To illustrate, consider the assumption used for the ten-year “status quo” forecast for 

mass shootings. The ten-year moving average rate for the 1976–2018 period was 1.30. We 

can apply this rate to the projected size of the U.S. population for each year during the 

2019–2028 period. For example, applying a rate of 1.30 (per 100 million) to a projected 

U.S. population of 331 million in 2019 results in 4.30 incidents. For 2024, the same rate 
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Table 1  Trends in the incidence and severity of mass public shootings, 1976–2018

Year Incidence Victims killed Victims shot

N Rate 5-Yr 10-Yr 20-Yr N Rate 5-Yr 10-Yr 20-Yr N Rate 5-Yr 10-Yr 20-Yr

1976 1 0.47 7 3.26 9 4.19

1977 3 1.39 18 8.32 24 11.09

1978 1 0.46 4 1.83 4 1.83

1979 0 0.00 0 0.00 0 0.00

1980 4 1.78 0.82 18 7.99 4.28 33 14.64 6.35

1981 2 0.87 0.90 9 3.93 4.41 31 13.53 8.22

1982 5 2.16 1.05 30 12.96 5.34 37 15.98 9.20

1983 2 0.85 1.13 12 5.13 6.00 14 5.98 10.03

1984 5 2.12 1.56 42 17.78 9.56 66 27.95 15.62

1985 1 0.42 1.28 1.05 4 1.68 8.29 6.29 5 2.09 13.11 9.73

1986 1 0.42 1.19 1.05 14 5.83 8.68 6.54 20 8.33 12.07 10.14

1987 1 0.41 0.84 0.95 6 2.47 6.58 5.96 16 6.57 10.19 9.69

1988 4 1.63 1.00 1.07 19 7.73 7.10 6.55 31 12.61 11.51 10.77

1989 2 0.81 0.74 1.15 13 5.24 4.59 7.07 56 22.56 10.43 13.03

1990 1 0.40 0.73 1.01 9 3.62 4.98 6.64 13 5.23 11.06 12.08

1991 5 1.98 1.05 1.12 40 15.86 6.98 7.83 74 29.34 15.26 13.66

1992 3 1.18 1.20 1.02 14 5.49 7.59 7.08 25 9.80 15.91 13.05

1993 7 2.71 1.42 1.21 35 13.57 8.76 7.93 73 28.30 19.05 15.28

1994 1 0.38 1.33 1.03 4 1.54 8.02 6.30 27 10.37 16.61 13.52

1995 3 1.14 1.48 1.11 1.08 14 5.33 8.36 6.67 6.48 18 6.85 16.93 14.00 11.86

1996 2 0.75 1.23 1.14 1.09 10 3.77 5.94 6.46 6.50 14 5.28 12.12 13.69 11.92

1997 3 1.12 1.22 1.21 1.08 12 4.48 5.74 6.66 6.31 21 7.85 11.73 13.82 11.76

1998 3 1.11 0.90 1.16 1.11 13 4.81 3.99 6.37 6.46 48 17.76 9.62 14.33 12.55

1999 7 2.57 1.34 1.34 1.24 49 17.97 7.27 7.64 7.36 102 37.41 15.03 15.82 14.42

2000 3 1.07 1.32 1.40 1.21 17 6.04 7.41 7.89 7.26 18 6.40 14.94 15.94 14.01
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Table 1  (continued)

Year Incidence Victims killed Victims shot

N Rate 5-Yr 10-Yr 20-Yr N Rate 5-Yr 10-Yr 20-Yr N Rate 5-Yr 10-Yr 20-Yr

2001 4 1.40 1.45 1.34 1.23 17 5.96 7.85 6.90 7.36 26 9.11 15.70 13.91 13.79

2002 1 0.35 1.30 1.26 1.14 4 1.39 7.23 6.49 6.78 6 2.08 14.55 13.14 13.09

2003 4 1.38 1.35 1.13 1.17 20 6.88 7.65 5.82 6.87 29 9.97 12.99 11.31 13.29

2004 3 1.02 1.04 1.19 1.11 15 5.11 5.07 6.17 6.24 26 8.85 7.28 11.16 12.34

2005 4 1.35 1.10 1.21 1.16 24 8.09 5.49 6.45 6.56 35 11.80 8.37 11.65 12.82

2006 5 1.67 1.15 1.30 1.22 27 9.02 6.10 6.97 6.72 36 12.02 8.95 12.33 13.01

2007 6 1.99 1.48 1.39 1.30 57 18.90 9.60 8.42 7.54 87 28.84 14.30 14.43 14.12

2008 5 1.64 1.53 1.44 1.30 26 8.55 9.93 8.79 7.58 53 17.43 15.79 14.39 14.36

2009 6 1.95 1.72 1.38 1.36 46 14.98 11.91 8.49 8.07 84 27.36 19.49 13.39 14.60

2010 5 1.62 1.77 1.44 1.42 24 7.76 11.84 8.66 8.27 36 11.64 19.46 13.91 14.92

2011 4 1.28 1.70 1.43 1.38 23 7.38 11.51 8.81 7.85 49 15.73 20.20 14.57 14.24

2012 7 2.23 1.75 1.61 1.44 67 21.35 12.00 10.80 8.64 148 47.15 23.86 19.08 16.11

2013 4 1.27 1.67 1.60 1.36 27 8.54 12.00 10.97 8.39 33 10.44 22.46 19.13 15.22

2014 3 0.94 1.47 1.59 1.39 14 4.40 9.89 10.90 8.54 33 10.36 19.06 19.28 15.22

2015 4 1.25 1.39 1.58 1.40 37 11.54 10.64 11.24 8.85 73 22.76 21.29 20.37 16.01

2016 4 1.24 1.38 1.54 1.42 65 20.12 13.19 12.35 9.66 131 40.55 26.25 23.23 17.78

2017 7 2.15 1.37 1.56 1.47 108 33.22 15.56 13.78 11.10 563 173.15 51.45 37.66 26.04

2018 10 3.06 1.73 1.70 1.57 78 23.84 18.62 15.31 12.05 133 40.65 57.50 39.98 27.19

Total 156 1092 2360

Avg 3.67 1.30 1.28 1.29 1.28 25.35 8.92 8.36 8.15 7.81 54.88 18.88 16.51 15.63 15.03
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yields 4.48 incidents due to the anticipated increase in the U.S. population (projected to be 

344,814,000 in 2024). Summing the annual incident values across the 2019–2028 period 

produces a total of 43 mass public shootings, which was the frequency we assumed for the 

ten-year “status quo” forecast. We repeated this same process for the other eight forecast 

scenarios.

Following Clauset and Woodard (2013), we implemented three variations of distribu-

tion-fitting models to assess the tail probabilities for the severity of mass public shoot-

ings: the Pareto (power law), the lognormal, and the Weibull (stretched exponential) dis-

tributions. We fit separate models for each of two different outcome variables, the number 

of victims killed by gunfire in each mass public shooting (“Killed Gunfire”) and the total 

number of victims shot (“Total Shot”). We implement each model in a Bayesian framework 

using the python interface (Stan Development Team 2018) to the probabilistic program-

ming language Stan (Carpenter et al. 2017), employing Hamiltonian Monte Carlo (HMC) 

sampling for posterior estimation. While we expect that using a frequentist model based 

on a maximum likelihood estimator with bootstrap confidence estimates (as in Clauset and 
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Fig. 1  Mass Public Shooting Incident Rate Per 100 Million, 1976–2018. Annual rates of mass public shoot-

ing incidents from 1976 to 2018 are based on 100 million of the U.S. population. To better illustrate the 

trend over time, the black line represents a five-year moving average

Table 2  Forecast assumptions

Rates are per 100 million of the U.S. population

Forecasts Five year Ten year Twenty year

Status Quo

Rate 1.28 1.29 1.28

Number of incidents 21 43 89

Pessimistic

Rate 1.77 1.70 1.57

Number of Incidents 29 56 109

Optimistic

Rate 0.73 0.95 1.08

Number of Incidents 13 34 77
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Woodard 2013) would yield similar results, we prefer the Bayesian approach because it 

aligns to a principled analytic workflow for probabilistic modeling (see e.g. Betancourt 

2018) and incorporates explicitly asserted statistical regularization through prior distri-

butions (see e.g. Gelman and Hennig 2017). Both Bayesian and frequentist methods are 

widely deployed in extreme value research (see e.g. Scarrott and MacDonald 2012 for a 

review). In general, regularization is important in small data regimes and in bootstrap-

ping procedures it is often necessary to incorporate simulated noise or other regularization 

(Raviv and Intrator 1996; Gelman and Vehtari 2014). While our results are not sensitive 

to the choice of prior distributions, we apply weakly informative prior information on the 

free parameters of the distributions as discussed for the analysis of mass public shootings 

by Sanders and Lei (2018). Following Clauset and Woodard (2013), we employ a discrete 

version of the Pareto distribution and continuous versions of the lognormal and Weibull 

distributions. We discuss this implementation further in “Appendix B”.

We further investigated the robustness of the model distributions to the choice of the tail 

location (xmin), the minimum severity cutoff used in distribution modeling. The primary 

application of the fitted models is to represent the high-severity tail of the distributions; the 

fit to the low-severity end (the bulk) of the distribution is incidental for that purpose. In the 

Bayesian framework, estimation of the cutoff value for separating the bulk of the distribu-

tion from the tail is often performed using a mixture modeling approach that incorporates 

data throughout the support of the distribution (Scarrott and MacDonald 2012). In the case 

of our analysis, historical data on public shooting incidents with fewer than 4 victims is not 

uniformly available, and so we prefer a fixed threshold analysis. Additionally, because the 

total number of events is relatively low, the sample size of modeled events and the result-

ing uncertainty in the modeled distribution may depend sensitively on the choice of cutoff. 

We fit models with minimum cutoffs of 4 and 10 victims (for both Killed Gunfire and 

Total Shot variables), corresponding to the minimum value for mass public shootings, and 

the fatalities cutoff for terrorist events used by Clauset and Woodard (2013), respectively. 

We note that the Killed Gunfire and Total Shot variables are highly correlated, though we 

model their distributions independently.

Overall, we fit 108 independent models (three distributions, two variables, three sce-

narios, three time windows, and two minimum severity cutoffs). For each model, we make 

predictions of the likelihood for an event to surpass each of four different severity thresh-

olds, t
s
. For the Total Shot variable, these four thresholds are chosen at t

s
 = [100, 250, 500, 

1000]. In doing so, we select several thresholds that approximate those found in the worst 

mass public shootings (102 in Orlando and 471 in Las Vegas) along with one (1000) that 

would be unprecedented in size. For Killed Gunfire, we select t
s
 = [49, 60, 75, 100] as 

thresholds, with the first two (49 and 60) representing the two deadliest mass public shoot-

ings within our dataset. In using these thresholds, we not only evaluate the likelihood that a 

mass public shooting as catastrophic as Orlando or Las Vegas will take place at some point 

over the next two decades, but also the probability of an attack that would be roughly twice 

as severe as either incident and, thus, unparalleled in American history.

We forecast the event probability Pf using a stochastic simulation taking into account 

future population growth, but assuming the per capita rates from Table 2 remain constant. 

We apply the annual US Census population projections from 2019 through 2039 to esti-

mate the total US population, Cy, at each year, y. For each year for each of 8000 posterior 

samples obtained from the model fit, we simulate a total number of events, Ne, consistent 

with the projected rate from a Poisson distribution. We then integrate the probability den-

sity function of the fitted tail distribution of fatalities, Pm(x), from the threshold value to 

infinity to estimate the probability that each mass public shooting event may exceed the 
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threshold severity. Note that for models fit with tail location x
min

 greater than the mini-

mum value of the observational data ( 4 ), it is necessary to adjust the integral by a factor  Ct 

equal to the probability that each simulated event in Ne belongs to the extreme x > x
min

 tail, 

which we estimate as a constant by integrating over the left side of the observed data dis-

tribution, Pdata. Note that when the tail location equals the minimum value of 4, no adjust-

ment is needed, i.e. C
t

(

x
min

= 4
)

= 1 . The total probability of an exceeding event in that 

year, Pf

(

ts, y
)

 , is then calculated by compounding7 these integrated probabilities. Finally, 

we combine the compound probability across all the simulated years to estimate the total 

cumulative probability of meeting the threshold over the time range from 2019 to 2039, 

P
(

t
s

)

 . Thus, for each tail model Pm(x) corresponding to a distinct choice of scenario, vari-

able, time window, and HMC step, we perform the following calculation:

C
t
(x

min
) = 1 − ∫ x

min

4
P

data
(x)dx After examining fit results at tail locations of 4 and 10 

victims for each variable (i.e., cutoffs or 4 or 10 Killed Gunfire or 4 or 10 Total Shot), we 

selected the tail location of 10 and focused on projections associated with this value in 

the following Results section. Clauset and Woodard (2013) used an empirical minimiza-

tion approach based on the Kolmogorov–Smirnov (KS) statistic to identify the xmin param-

eter algorithmically. Such an approach is not consistent with the Bayesian methodology we 

employ. As discussed previously, because modifying the value of xmin truncates the data 

distribution and invalidates comparisons between the likelihood model across xmin values, 

the nearest Bayesian alternative to the KS minimization routine would be to fix a mixture 

model. As we will demonstrate in the following section, we select the tail location value 

10 because it generally achieves better model performance among the most severe events, 

which our forecasts address. We note that setting the tail location to 10 effectively discards 

88% of cases for the Killed Gunfire variable and 63% of cases for the Total Shot variable 

in focusing the model further in the tail of the distribution. We report full results and addi-

tional comparisons between the choices of tail location in “Appendix C”.

Results

We present the fitted distribution models for the tail location of 10 for the Killed Gun-

fire and Total Shot variables in Fig. 2. The blue shaded region shows the complementary 

cumulative distribution of observed event severities from 1976 to 2018. The solid lines 

indicate the best fit (posterior median) models for each choice of distribution. Each best 

fit line is surrounded by a shaded region representing the 90% posterior interval of each 

model fit. The shaded region grows as a function of severity because the data in that regime 

are more sparse and, thus, less constraining on the model.

P
(

ts
)

= 1 −

2039
∏

y=2019

[

1 − Pf

(

ts, y
)]

, and

Pf

(

ts, y
)

= 1 −

Ny
∏

N=1

Ct

(

xmin

)

[

1 −
inf

∫
ts

Pm(x)dx

]

,

where Ny ∼ Poisson
(

Cy

)

, and

7 For clarity of the following equations, we note that we express the compound probability as follows: the 

total probability P of at least one incidence of an event over n = {1…N} trials each with probability p is 

P = 1 −
∏

n(1 − pn)
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A few deviations between the observed data and model fit, and between the models 

themselves, can be observed in Fig. 2. For the Killed Gunfire variable, the lognormal and 

Weibull models have relatively weak tails, under-predicting the observed rates of events 

with more than 20 shooting fatalities. Because such a small number of events have been 

observed in this regime, their true rate is highly uncertain and they have relatively little 

constraining power on the models; the observed distribution is consistent with the posterior 

interval of all models in this regime. In contrast, the Pareto model has a relatively heavy 

tail, better matching the observed rate of events with more than 20 shooting fatalities. The 

behavior for the Total Shot variable is similar, with the lognormal and Weibull models 

under-predicting the observed density of the very small number of events with more than 

100 victims shot. Even the Pareto model predicts a lower rate of events with more than 

400 shooting victims than the singular occurrence of the Las Vegas shooting would imply. 

These behaviors propagate to the forward projections reported below.

Figure 3 suggests that there is no overwhelming empirical basis for the preference of one 

model over another, but supports the selection of the tail location of 10. We evaluated the 

goodness of fit performance of the three different models by estimating the expected log 

pointwise predictive density (ELPD) goodness of fit statistic via approximate leave-one-out 

cross validation using Pareto-smoothed importance sampling (Vehtari et al. 2017). The use 

of a Pareto-smoothed importance sampling method is incidental to the choice of tail mod-

els. In order to evaluate performance in predicting the rate of the highest severity events, 

we estimate the ELPD only among observations with a severity greater than or equal to 10. 

This subselection also allows us to compare ELPD values consistently across choices of tail 

location without the complexity of data truncation (see the further discussion in “Appendix 

C”). Figure 3 displays a normal approximation of the estimated ELPD value for each model 

Fig. 2  Best Fit Severity Distributions, tail location of 10. Probabilistic model fits to the observed sever-

ity distribution (blue bars) of Killed Gunfire (left) and Total Shot (right). The complementary cumulative 

distribution functions of three different models, each fit with a tail location of 10, are shown (colored lines) 

together with their 90% posterior intervals (shaded regions)
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and variable combination for each tail location as a violin plot; higher (more positive) ELPD 

scores correspond to greater model predictive accuracy. The violin plot displays the prob-

ability at each ELPD value using variation in the horizontal width of the shaded region. The 

figure illustrates clear separation between equivalent models with different tail locations, 

with the version with xmin = 10 consistently achieving higher much ELPD. For a given tail 

location, the ELPD measures substantially overlap across models and do not strongly dis-

criminate between them. For models with a tail location of 10, the performance statistics 

are virtually identical, with no one model ever being preferred by ELPD over another in 

more than 57% of simulations. For models with tail location of 4, the Pareto model is some-

what favored for the Killed Gunfire variable (with highest ELPD in 80% of simulations) and 

somewhat disfavored for Total Shot (with lower ELPD in 67% of simulations). In all cases, 

the lognormal and Weibull models have essentially identical performance.

The reason why there are evident differences between the modeled probability distribu-

tions (Fig. 2) despite the fact that they cannot be distinguished with goodness of fit statis-

tics (Fig. 3) is because of the sparse sampling at high severities. The models deviate from 

each other predominantly in their prediction of rates at high severity; that is, x values where 

there are no or very few historical examples. Because of their sparsity in this regime, the 

data have very little constraining power on model differences there. Together, Figs. 2 and 3 

illustrate that the choice of tail model corresponds to an assumption about how to extrapo-

late severity rates into this extreme value domain.

Table 3 summarizes the projections for the cumulative probability of severe Killed Gun-

fire events for models with a tail location of 10. Similar tables for the single-year event 

probability and for other configurations of the tail location and modeled variable are pre-

sented in Appendices C (tail location of 4) and D (tail location of 10).

Table  3 reports the cumulative forecasted probability for any event to exceed each 

severity threshold at least once in the next 20 years, 2019–2039. Each column represents 

Fig. 3  Model evaluation statistics. Model performance estimates compared across all fitted models, evalu-

ated over the x >  = 10 tail of the data distribution. A higher ELPD statistic reflects a better fit to the data
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a different severity threshold and the rows cover different combinations of distribution 

model, time window, and rate scenario. For the severity of the Las Vegas shooting (60 

gunfire fatalities), the results range from 25% [5.3–55] under the optimistic scenario for the 

lognormal model with a 5 year time window to about 55% [21–89] for the pessimistic sce-

nario using the Pareto model with the 5 year time window. A mid-range prediction comes 

from the lognormal model under the status quo scenario, which projects a 35% [8.5, 72] 

probability. The probability of an attack with 100 gunfire fatalities occurring ranges from 

7.0% [0.27, 24] for Weibull model in the optimistic scenario with the 5-year time window 

to 34% [7.2, 72] for the pessimistic Pareto with the 5 year window. Not surprisingly, the 

shortest time window (which included the Las Vegas event) yields the most extreme prob-

abilities and, as we have seen, the Pareto model produces more pessimistic projections, 

particularly in the high severity domain.

Table 3  Event probability projections: killed gunfire, cumulative, tail location of 4

Projections for the cumulative probability of at least one event occurring between 2019 and 2039 with 

severity for the Killed Gunfire variable meeting each of several thresholds in percentages. Each column pre-

sents results for a different severity threshold. The table provides a median prediction for each combination 

of distribution model, time window, and rate scenario. The bracketed numbers represent the 90% posterior

Scenario Model Window P2019–2039 

(x > 49)

P2019–2039 

(x > 60)

P2019–2039 

(x > 75)

P2019–2039 

(x > 100)

Optimistic Lognormal 5 33 [9.4, 65] 23 [4.6, 54] 15 [1.9, 41] 8.5 [0.54, 28]

Optimistic Lognormal 10 39 [12, 73] 28 [5.6, 61] 18 [2.4, 48] 10 [0.68, 33]

Optimistic Lognormal 20 41 [13, 76] 29 [6.1, 64] 20 [2.6, 51] 11 [0.75, 35]

Optimistic Pareto 5 40 [15, 71] 32 [9.6, 62] 25 [5.9, 54] 18 [3.1, 43]

Optimistic Pareto 10 47 [18, 78] 38 [12, 70] 29 [7.3, 62] 21 [3.9, 50]

Optimistic Pareto 20 49 [19, 81] 40 [13, 73] 31 [8, 64] 23 [4.2, 53]

Optimistic Weibull 5 32 [8.3, 64] 22 [3.5, 52] 14 [1.3, 39] 6.9 [0.27, 24]

Optimistic Weibull 10 37 [10, 73] 26 [4.5, 60] 16 [1.6, 45] 8.4 [0.35, 29]

Optimistic Weibull 20 40 [11, 75] 28 [4.9, 63] 17 [1.8, 48] 9.1 [0.37, 31]

Pessimistic Lognormal 5 55 [20, 90] 41 [9.8, 81] 28 [4.1, 68] 17 [1.2, 51]

Pessimistic Lognormal 10 53 [18, 88] 39 [9.2, 79] 27 [3.8, 66] 16 [1.1, 48]

Pessimistic Lognormal 20 51 [18, 86] 38 [8.6, 77] 26 [3.7, 64] 15 [1.1, 46]

Pessimistic Pareto 5 64 [30, 93] 54 [20, 88] 44 [13, 81] 33 [6.6, 71]

Pessimistic Pareto 10 62 [28, 91] 52 [19, 86] 42 [12, 79] 31 [6.3, 68]

Pessimistic Pareto 20 60 [26, 90] 50 [18, 85] 40 [11, 77] 30 [5.9, 66]

Pessimistic Weibull 5 54 [17, 89] 39 [7.9, 80] 25 [2.8, 66] 14 [0.6, 46]

Pessimistic Weibull 10 51 [16, 88] 37 [7.2, 77] 24 [2.6, 63] 13 [0.55, 43]

Pessimistic Weibull 20 50 [15, 86] 35 [6.9, 75] 23 [2.4, 61] 12 [0.52, 41]

Status Quo Lognormal 5 46 [15, 81] 33 [7.3, 71] 22 [3, 57] 13 [0.9, 40]

Status Quo Lognormal 10 46 [15, 81] 33 [7.2, 70] 22 [3, 57] 13 [0.86, 40]

Status Quo Lognormal 20 45 [15, 80] 33 [7, 70] 22 [3, 57] 13 [0.86, 40]

Status Quo Pareto 5 54 [22, 86] 45 [15, 79] 36 [9.2, 70] 26 [5, 59]

Status Quo Pareto 10 54 [23, 85] 45 [15, 78] 35 [9.4, 70] 26 [4.9, 59]

Status Quo Pareto 20 54 [22, 85] 44 [15, 79] 35 [9.1, 70] 26 [4.9, 58]

Status Quo Weibull 5 44 [13, 81] 31 [5.8, 69] 20 [2.1, 54] 11 [0.43, 36]

Status Quo Weibull 10 44 [13, 80] 31 [5.7, 68] 20 [2, 54] 10 [0.43, 36]

Status Quo Weibull 20 44 [13, 80] 31 [5.6, 68] 20 [2, 54] 10 [0.43, 36]
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For the Total Shot variable, the probability of significantly exceeding the Las Vegas 

shooting’s severity (using 500 victims as a test threshold) ranges from 0.8% [0.02, 3] for 

the optimistic Weibull model with the 5 year time window to 24% [6.4, 50] for the pes-

simistic Pareto at the 5 years window. Generally, the projected probabilities to repeat the 

fatality level of the Las Vegas shooting are higher than the probability of repeating its total 

shooting injuries, owing to the extraordinarily high level of Total Shot in that incident. 

Further statistics are reported in Table D3, and additional single-year and cumulative prob-

abilities are reported elsewhere in “Appendix D”.

Figure  4 illustrates the projection of the fitted lognormal distribution model with tail 

location of 10 for the Killed Gunfire variable over time with the severity threshold of 60 

victims, again corresponding to the highest ever historical severity from the Las Vegas 

shooting. Each panel represents a choice of time window and each line within each panel 

represents a choice of rate scenario. Each line shows the cumulative probability, under the 

model, for any event meeting the threshold over time. The lines rise monotonically because 

they are cumulative probabilities. The shaded regions represent the 90% interval associ-

ated with each scenario. The uncertainty grows quickly with time as the posterior interval 

associated with the distribution model is compounded year over year. The shaded regions 

strongly overlap between the different scenarios because the uncertainties are generally 

larger than the differences between the rate estimate scenarios. We note that the position of 

the solid lines in Fig. 4, which are based on simulation medians, differ very slightly from 

the mean estimates reported in Table 3.

Finally, Fig. 5 compares the fitted probability distributions for each model for the Killed 

Gunfire variable at the two alternative values for the tail location. This comparison sup-

ports our choice to focus on the models with tail location of 10. In particular, the predicted 

distribution of gunfire fatalities for the tail location of 4 substantially under-predicts the 

actual occurrence of extreme events like the Las Vegas and Orlando shootings, with the 

lognormal and Weibull fits falling below the observed complementary cumulative distri-

bution by nearly two orders of magnitude at x = 50. In general, the projections to higher 

Fig. 4  Projections for events exceeding 60 Killed Gunfire fatalities, Lognormal model, tail location of 4. 

Projections for the cumulative probability of an incident occurring which exceeds the threshold of 60 Killed 

Gunfire fatalities between 2019 and 2039. The projections shown are for the lognormal tail model fit with 

tail location of 10 in each of the three rate scenarios (colored lines) for each of the three studied time win-

dows (left, center, and right) described in the text
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severity levels agree more across models at the tail location of 10 because, when low sever-

ity values are truncated from the distribution, there are fewer data points with leverage to 

influence the fit from the left side of the distribution. See “Appendix C” for further discus-

sion of the impact of tail location.

Conclusions

Mass public shootings are a rare but fear-inducing phenomenon that, because of their seem-

ingly random nature, have been thought to be beyond prediction and projection. Recent 

scholarship has illustrated how to fit heavy tailed distributions to rare events to forecast 

severity into the future. In this study, we sought to utilize those techniques to forecast the 

severity of mass public shootings up to the year 2039 using a variety of assumptions.

Our results illustrate that forward projections of incident rates for high severity mass 

public shooting events strongly depend on assumptions made about the tail shape of 

the severity distribution, and even modeling details such as the tail location. Compared 

to the case of terrorist events, as studied by Clauset and Woodard (2013), mass public 

shootings have historically been sufficiently rare that the distribution statistics are very 

poorly sampled at high severity rates. As a result, the historical data have relatively low 

constraining power for models of their long tail behavior.

In particular, we find that extrapolations to severities at least as high as the most 

extreme events previously observed vary significantly depending on the choice of dis-

tribution model. Pareto model fits tend to be substantially more pessimistic (predicting 

Fig. 5  Comparison between tail locations, Killed Gunfire. Comparison of modeled complementary cumula-

tive distributions for the Killed Gunfire variable, as in Fig. 2, between models fit with tail locations of 4 

(left) and 10 (right). As in Fig. 2, the light gray line (right facet) reflects the non-truncated, full data distri-

bution
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more frequent extremely severe events) than Weibull or lognormal fits (see Figs. 2 and 

5). Empirical measures of goodness of fit do not solve this problem, as they have little 

power to distinguish between these model alternatives (Fig. 3).

While the power law Pareto distribution may be scale-free in principle, an attractive 

characteristic suggesting the possibility of free extrapolation to increasingly extreme 

values, this benefit is not realized in practice. The issue manifests such that the choice 

of scale location substantially influences the probabilities predicted by the Pareto model. 

When lower severity data are admitted to the modeling procedure, the predictions of the 

Pareto model become substantially more optimistic (Fig. 5). The Weibull and Lognor-

mal, which are inherently two-parameter models in addition to the tail location variable, 

are even more sensitive to the choice of this data selection parameter.

Finally, although the projection uncertainties reported in Tables  3, 4, 5 and 6 and 

“Appendix B1–B3” are large, they are likely underestimates. The predictive uncertainty 

represented by these intervals as well as the shaded regions in Figs. 2 and 5 are poste-

rior intervals conditioned on the model selection and do not directly incorporate vari-

ance between models. An alternate approach, which may be useful to establish an upper 

bound on the model-selection uncertainty, would be to fit a non-parametric model such 

as a Gaussian Process with no constraints (or very few constraints, such as monotonic-

ity). Additionally, while our approach accounts for growth in the U.S. population, we 

assume the underlying per capita rate of mass public shootings is constant over time. 

Any long-term change in the incident rate would alter the probability estimates we 

report here and uncertainty in the growth trend would enlarge our prediction intervals.

While forecasting the probability of severe events cannot tell us where or exactly 

when those events may transpire, such analyses are important for policy and prac-

tice. There is much confusion around what constitutes mass shootings and why they 

occur. As a result, there is pessimism regarding whether mass public shootings can be 

predicted (Archer 2018). However, most efforts at prediction rely on developing risk 

assessments or profiles of potential shooters. By using sound methodology to predict the 

probability of mass casualty events occurring in the future, our study provides estimates 

that can be used to inform a variety of resource allocation decisions. Such estimates may 

inform, for example, public health officials modeling the trauma capacity of regional 

hospital systems, policymakers seeking to understand the potential consequences of the 

availability of high capacity magazines and assault weapons, or public safety officers 

assessing risk around large public gatherings.

Our findings suggest the probability that a mass public shooting at the largest previ-

ously-observed scale will reoccur in the U.S. is not trivial. Indeed, despite the variability 

across the forecasts presented here, the results still suggest that the likelihood the U.S. 

will endure another attack as deadly as the 2017 Las Vegas massacre at some point over 

the next 20 years is greater than five percent, even under the most optimistic modeling 

scenario and assuming the lower uncertainty bound (5% posterior interval) of our model 

(Table 3). Therefore, given the devastating impact that catastrophic mass public shoot-

ings have on society, policymakers will need to ensure there are sufficient resources and 

policies in place to help reduce the incidence and severity of lethal mass violence.

Appendix A

See Table 4.
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Table 4  Mass public shootings, 1976–2018

Case Date City State Killed Killed gunfire Injured Total shot

1 7/12/1976 Fullerton CA 7 7 2 9

2 2/14/1977 New Rochelle NY 6 6 4 10

3 7/23/1977 Klamath Falls OR 6 6 2 8

4 8/26/1977 Hackettstown NJ 6 6 0 6

5 6/17/1978 Warwick RI 4 4 0 4

6 2/3/1980 El Paso TX 5 5 3 8

7 6/22/1980 Daingerfield TX 5 5 10 15

8 7/21/1980 Coraopolis PA 4 4 1 5

9 8/1/1980 Holmes Beach FL 4 4 1 5

10 5/7/1981 Salem OR 4 4 19 23

11 10/16/1981 Floyd State Police KY 5 5 3 8

12 1/2/1982 Elyria OH 4 4 0 4

13 5/3/1982 Anchorage AK 4 4 0 4

14 8/9/1982 Grand Prairie TX 6 6 4 10

15 8/20/1982 Miami FL 8 8 3 11

16 9/6/1982 Noyes Island AK 8 8 0 8

17 3/1/1983 State Police AK 6 6 2 8

18 10/11/1983 Waller TX 6 6 0 6

19 5/17/1984 State Police AK 7 7 0 7

20 6/29/1984 Dallas TX 6 6 1 7

21 7/18/1984 San Ysidro CA 21 21 19 40

22 7/24/1984 Hot Springs AR 4 4 3 7

23 9/9/1984 Oakley ID 4 4 1 5

24 3/16/1985 South Connellsville PA 4 4 1 5

25 8/20/1986 Edmond OK 14 14 6 20

26 4/23/1987 Palm Bay FL 6 6 10 16

27 2/16/1988 Sunnyvale CA 7 7 5 12

28 7/17/1988 Forsythe NC 4 4 5 9

29 9/22/1988 Chicago IL 4 4 2 6

30 12/7/1988 San Luis Obispo CA 42 4 0 4

31 1/17/1989 Stockton CA 5 5 31 36

32 9/14/1989 Louisville KY 8 8 12 20

33 6/18/1990 Jacksonville FL 9 9 4 13

34 10/16/1991 Killeen TX 23 23 22 45

35 11/1/1991 Iowa City IA 5 5 1 6

36 11/9/1991 Harrodsburg KY 4 4 2 6

37 11/14/1991 Royal Oak MI 4 4 8 12

38 12/9/1991 Moniteau MO 4 4 1 5

39 5/1/1992 Olivehurst CA 4 4 10 14

40 10/15/1992 Schuyler NY 4 4 0 4

41 11/8/1992 Morro Bay CA 6 6 1 7

42 7/1/1993 San Francisco CA 8 8 6 14

43 7/8/1993 Jackson/Greenville MS 5 5 0 5

44 8/6/1993 Fayetteville NC 4 4 8 12
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Table 4  (continued)

Case Date City State Killed Killed gunfire Injured Total shot

45 10/14/1993 El Cajon CA 4 4 2 6

46 12/2/1993 Oxnard CA 4 4 4 8

47 12/7/1993 Long Island Rl NY 6 6 17 23

48 12/14/1993 Aurora CO 4 4 1 5

49 6/20/1994 Spokane WA 4 4 23 27

50 4/3/1995 Corpus Christi TX 5 5 1 6

51 7/19/1995 Los Angeles CA 4 4 0 4

52 12/19/1995 New York NY 5 5 3 8

53 2/9/1996 Fort Lauderdale FL 5 5 1 6

54 4/25/1996 Jackson MS 5 5 3 8

55 8/20/1997 Colebrook NH 4 4 4 8

56 9/15/1997 Aiken SC 4 4 3 7

57 12/18/1997 Orange CA 4 4 2 6

58 3/6/1998 Newington CT 4 4 0 4

59 3/24/1998 Craighead AR 5 5 10 15

60 5/21/1998 Springfield OR 4 4 25 29

61 3/10/1999 Gonzalez LA 4 4 4 8

62 4/20/1999 Jefferson CO 13 13 25 38

63 6/3/1999 Las Vegas NV 4 4 1 5

64 7/29/1999 Atlanta GA 12 9 13 22

65 9/15/1999 Fort Worth TX 7 7 7 14

66 11/2/1999 Honolulu HI 7 7 0 7

67 12/30/1999 Tampa FL 5 5 3 8

68 3/20/2000 Irving TX 5 5 0 5

69 4/28/2000 Pittsburgh PA 5 5 1 6

70 12/26/2000 Wakefield MA 7 7 0 7

71 1/9/2001 Houston TX 4 4 0 4

72 2/5/2001 Melrose IL 4 4 4 8

73 7/3/2001 Rifle CO 4 4 3 7

74 9/8/2001 Sacramento CA 5 5 2 7

75 3/22/2002 South Bend IN 4 4 2 6

76 2/25/2003 Huntsville AL 4 4 1 5

77 7/8/2003 Lauderdale MS 6 6 8 14

78 8/27/2003 Chicago IL 6 6 0 6

79 10/24/2003 Bonner City ID 4 4 0 4

80 7/2/2004 Kansas City KS 5 5 2 7

81 11/21/2004 Meteor WI 6 6 2 8

82 12/8/2004 Columbus OH 4 4 7 11

83 3/11/2005 Atlanta GA 4 4 2 6

84 3/12/2005 Brookfield WI 7 7 4 11

85 3/21/2005 Red Lake MN 9 9 5 14

86 8/28/2005 Sash TX 4 4 0 4

87 1/30/2006 Goleta CA 7 7 0 7

88 3/25/2006 Seattle WA 6 6 2 8
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Table 4  (continued)

Case Date City State Killed Killed gunfire Injured Total shot

89 4/18/2006 St. Louis MO 4 4 1 5

90 5/21/2006 Baton Rouge LA 5 5 1 6

91 10/2/2006 Nickel Mines PA 5 5 5 10

92 2/12/2007 Salt Lake City UT 5 5 4 9

93 4/16/2007 Blacksburg VA 32 32 17 49

94 7/22/2007 Philadelphia PA 4 4 0 4

95 11/22/2007 Unity MD 4 4 0 4

96 12/5/2007 Omaha NE 8 8 4 12

97 12/9/2007 Colorado Springs CO 4 4 5 9

98 2/7/2008 Kirkwood MO 6 6 1 7

99 2/14/2008 Dekalb IL 5 5 21 26

100 3/18/2008 Santa Maria CA 4 4 0 4

101 6/25/2008 Henderson KY 5 5 1 6

102 9/2/2008 Alger WA 6 6 4 10

103 2/14/2009 Brockport NY 4 4 0 4

104 3/29/2009 Carthage NC 8 8 2 10

105 4/3/2009 Binghamton NY 13 13 4 17

106 11/1/2009 Mount Airy NC 4 4 0 4

107 11/5/2009 Killeen TX 13 13 32 45

108 11/29/2009 Parkland WA 4 4 0 4

109 1/12/2010 Kennesaw GA 4 4 1 5

110 4/3/2010 Los Angeles CA 4 4 2 6

111 6/6/2010 Hialeah FL 4 4 3 7

112 8/3/2010 Manchester CT 8 8 2 10

113 8/14/2010 Buffalo NY 4 4 4 8

114 1/8/2011 Tucson AZ 6 6 14 20

115 7/23/2011 Grand Prairie TX 5 5 4 9

116 9/6/2011 Carson City NV 4 4 7 11

117 10/12/2011 Seal Beach CA 8 8 1 9

118 2/21/2012 Norcross GA 4 4 0 4

119 4/2/2012 Oakland CA 7 7 3 10

120 5/30/2012 Seattle WA 5 5 1 6

121 7/20/2012 Aurora CO 12 12 70 82

122 8/5/2012 Oak Creek WI 6 6 3 9

123 9/27/2012 Minneapolis MN 6 6 2 8

124 12/14/2012 Newtown CT 27 27 2 29

125 3/13/2013 Herkimer NY 4 4 2 6

126 6/7/2013 Santa Monica CA 5 5 1 6

127 7/26/2013 Hialeah FL 6 6 0 6

128 9/16/2013 Washington DC 12 12 3 15

129 2/20/2014 Alturas CA 4 4 2 6

130 5/23/2014 Isla Vista CA 6 6 14 20

131 10/24/2014 Marysville WA 4 4 3 7

132 6/17/2015 Charleston SC 9 9 1 10
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Table 4  (continued)

Case Date City State Killed Killed gunfire Injured Total shot

133 7/16/2015 Chattanooga TN 5 5 2 7

134 10/1/2015 Roseburg OR 9 9 9 18

135 12/2/2015 San Bernardino CA 14 14 24 38

136 2/20/2016 Kalamazoo MI 6 6 2 8

137 6/12/2016 Orlando FL 49 49 53 102

138 7/7/2016 Dallas TX 5 5 11 16

139 9/23/2016 Burlington WA 5 5 0 5

140 1/6/2017 Fort Lauderdale FL 5 5 6 11

141 2/6/2017 Yazoo City MS 4 4 0 4

142 3/22/2017 Rothschild WI 4 4 0 4

143 6/5/2017 Orlando FL 5 5 0 5

144 10/1/2017 Las Vegas NV 60 60 411 471

145 11/5/2017 Sutherland Springs TX 25 25 20 45

146 11/14/2017 Rancho Tehama CA 5 5 18 23

147 1/28/2018 Melcroft PA 4 4 1 5

148 2/14/2018 Parkland FL 17 17 17 34

149 2/26/2018 Detroit MI 4 4 0 4

150 4/22/2018 Nashville TN 4 4 4 8

151 5/18/2018 Santa Fe TX 10 10 13 23

152 5/30/2018 Scottsdale AZ 6 6 0 6

153 6/28/2018 Annapolis MD 5 5 2 7

154 9/12/2018 Bakersfield CA 5 5 0 5

155 10/27/2018 Pittsburgh PA 11 11 6 17

156 11/7/2018 Thousand Oaks CA 12 12 12 24
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Appendix B: Implementation of Bayesian Tail Models in Stan

As described in the Methods section, we implemented Bayesian discrete Pareto and con-

tinuous truncated lognormal and Weibull models using the python interface (Stan Develop-

ment Team 2018) to the probabilistic programming language Stan (Carpenter et al. 2017), 

version 2.19.1.1. We used the Hamiltonian Monte Carlo sampling method to draw samples 

from the model posteriors. Full code and data associated with this analysis will be posted 

on GitHub at https:// github. com/ (autho rs)/ and we briefly describe these methods here.

To implement the discrete Pareto (also called Zipf) model with arbitrary values of the 

tail location xmin, we implement an approximation of the Hurwitz zeta function in C++ and 

imported it as an external library to the Stan model. We apply a normal prior on the Pareto 

rate parameter ⍺ with mean 2 and standard deviation 2. While the normal is a relatively 

strong prior distribution in the sense of having weak tails that do not support extreme 

parameter samples, we note that none of our model fits has a significant number of samples 

above the 1 sigma level of this prior distribution (i.e. ⍺ is generally much less than 4).

To implement the continuous truncated lognormal, we use the Stan truncated distribu-

tion notation to declare a lower bound on the lognormal distribution. We apply half-Cauchy 

prior distributions to the location (μ) and scale parameters (σ), where the half-Cauchy scale 

is set to the standard value (1).

To implement the continuous truncated Weibull, we again use the Stan truncated dis-

tribution notation and apply standard half-Cauchy prior distributions to the shape (⍺) and 

scale parameters (σ).

To implement model comparison via Pareto-smoothed importance sampling leave-one-

out cross validation (PSIS-LOO; Vehtari et al. 2017), we add a pointwise log likelihood 

calculation to the generated quantities block of each model and then supply these values to 

the loo method of the Arviz python package (Kumar et al. 2019) with the scale parameter 

set to “log”. To calculate the ELPD over data points at X > 10 only, generate an additional 

pointwise log likelihood variable for this subset of the data.

To facilitate plotting, we implement identical probability models for the discrete Pareto, 

truncated Weibull, and truncated lognormal in python using the scipy library (Virtanen 

et al. 2020).

What follows is the Stan code for each model. The C++ implementation of the Hurwitz 

zeta function is available in the GitHub repository.

https://github.com/(authors
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Fig. 6  Comparison between tail locations, Total Shot. Comparison of fitted severity probability distribu-

tions with different tail locations, as in Fig. 5, for the Total Shot variable

Fig. 7  Forecast comparisons across tail locations. Comparison of forecasted log odds for the cumulative 

risk (probability) of extreme events between 2019 and 2039 for each variable (left and right facets) with 

various thresholds (x-axis values) across models (y-axis). The color scale shows the difference in log odds 

between the models with tail locations of 10 and 4
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Algorithm B1 Stan code for Lognormal tail model

Fig. 8  Model evaluation for all datapoints. Model performance estimates, as in Fig. 3, but using all data-

points to calculate the ELPD
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Table 5  Event probability projections: killed gunfire, single year, tail location of 4

Projections for the single-year probability of at least one event occurring in 2019 with severity for the Killed Gunfire variable meeting each of several thresholds, for models 

with a tail location of  xmin = 4. Formatting follows Table 3

Scenario Model Window P2019 (x > 49) P2019 (x > 60) P2019 (x > 75) P2019 (x > 100)

Optimistic Lognormal 5 0.071 [0, 0.21] 0.028 [0, 0.087] 0.0094 [0, 0.032] 0.0022 [0, 0.0078]

Optimistic Lognormal 10 0.088 [0.0084, 0.26] 0.034 [0.0027, 0.11] 0.012 [0.0007, 0.038] 0.0027 [0.0001, 0.0095]

Optimistic Lognormal 20 0.096 [0.01, 0.28] 0.037 [0.0033, 0.11] 0.013 [0.00087, 0.041] 0.003 [0.00013, 0.01]

Optimistic Pareto 5 1.4 [0, 3.5] 0.96 [0, 2.4] 0.62 [0, 1.6] 0.36 [0, 0.95]

Optimistic Pareto 10 1.8 [0.32, 4.2] 1.2 [0.2, 2.9] 0.77 [0.13, 1.9] 0.44 [0.066, 1.1]

Optimistic Pareto 20 1.9 [0.38, 4.5] 1.3 [0.24, 3.1] 0.84 [0.15, 2] 0.48 [0.078, 1.2]

Optimistic Weibull 5 0.1 [0, 0.31] 0.042 [0, 0.14] 0.015 [0, 0.053] 0.0039 [0, 0.015]

Optimistic Weibull 10 0.13 [0.012, 0.38] 0.053 [0.0035, 0.17] 0.019 [0.00083, 0.065] 0.0048 [0.00011, 0.018]

Optimistic Weibull 20 0.14 [0.014, 0.4] 0.057 [0.0045, 0.18] 0.021 [0.0011, 0.07] 0.0053 [0.00014, 0.019]

Pessimistic Lognormal 5 0.15 [0.024, 0.42] 0.06 [0.0075, 0.18] 0.021 [0.002, 0.064] 0.0048 [0.00032, 0.016]

Pessimistic Lognormal 10 0.14 [0.021, 0.4] 0.057 [0.0068, 0.17] 0.019 [0.0018, 0.06] 0.0045 [0.00029, 0.015]

Pessimistic Lognormal 20 0.14 [0.019, 0.38] 0.053 [0.0062, 0.16] 0.018 [0.0016, 0.057] 0.0042 [0.00027, 0.014]

Pessimistic Pareto 5 3.1 [0.86, 6.6] 2.1 [0.55, 4.6] 1.3 [0.34, 3.1] 0.77 [0.18, 1.8]

Pessimistic Pareto 10 2.9 [0.78, 6.2] 1.9 [0.49, 4.3] 1.3 [0.3, 2.9] 0.72 [0.16, 1.7]

Pessimistic Pareto 20 2.7 [0.7, 5.9] 1.8 [0.45, 4.1] 1.2 [0.27, 2.8] 0.68 [0.14, 1.6]

Pessimistic Weibull 5 0.22 [0.033, 0.62] 0.092 [0.01, 0.28] 0.033 [0.0026, 0.11] 0.0085 [0.00035, 0.031]

Pessimistic Weibull 10 0.21 [0.03, 0.58] 0.086 [0.0094, 0.26] 0.031 [0.0023, 0.1] 0.0079 [0.00032, 0.029]

Pessimistic Weibull 20 0.2 [0.027, 0.55] 0.081 [0.0085, 0.25] 0.029 [0.0021, 0.096] 0.0075 [0.00029, 0.027]

Status Quo Lognormal 5 0.11 [0.015, 0.32] 0.044 [0.0047, 0.13] 0.015 [0.0012, 0.048] 0.0035 [0.0002, 0.012]

Status Quo Lognormal 10 0.11 [0.014, 0.32] 0.044 [0.0046, 0.13] 0.015 [0.0012, 0.048] 0.0035 [0.00019, 0.012]

Status Quo Lognormal 20 0.11 [0.014, 0.31] 0.044 [0.0044, 0.13] 0.015 [0.0012, 0.047] 0.0034 [0.00019, 0.012]

Status Quo Pareto 5 2.3 [0.51, 5.1] 1.5 [0.33, 3.5] 0.99 [0.2, 2.4] 0.56 [0.11, 1.4]

Status Quo Pareto 10 2.2 [0.5, 5] 1.5 [0.32, 3.5] 0.98 [0.2, 2.3] 0.56 [0.11, 1.4]

Status Quo Pareto 20 2.2 [0.5, 5] 1.5 [0.32, 3.5] 0.98 [0.19, 2.3] 0.56 [0.1, 1.4]

Status Quo Weibull 5 0.16 [0.02, 0.47] 0.068 [0.0063, 0.21] 0.025 [0.0015, 0.082] 0.0062 [0.00021, 0.023]

Status Quo Weibull 10 0.16 [0.02, 0.46] 0.067 [0.0062, 0.21] 0.024 [0.0015, 0.08] 0.0062 [0.00021, 0.023]

Status Quo Weibull 20 0.16 [0.019, 0.46] 0.067 [0.0061, 0.21] 0.024 [0.0015, 0.081] 0.0061 [0.0002, 0.022]
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Algorithm B2 Stan code for Pareto tail model
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Table 6  Event probability projections: total shot, single year, tail location of 4

Projections for the single-year probability of at least one event occurring in 2019 with severity for the Total Shot variable meeting each of several threshold, for models with a 

tail location of  xmin = 4. Formatting follows Table 3

Scenario Model Window P (x > 100) P2019 (x > 250) P2019 ( > 500) P2019 (x > 1000)

Optimistic Lognormal 5 2.3 [0, 5.7] 0.29 [0, 0.83] 0.049 [0, 0.16] 0.0072 [0, 0.026]

Optimistic Lognormal 10 2.9 [0.51, 6.8] 0.36 [0.041, 1] 0.061 [0.0038, 0.19] 0.009 [0.00027, 0.032]

Optimistic Lognormal 20 3.1 [0.61, 7.2] 0.39 [0.05, 1.1] 0.067 [0.005, 0.21] 0.0098 [0.00035, 0.035]

Optimistic Pareto 5 8.7 [0, 19] 3.5 [0, 8.2] 1.8 [0, 4.3] 0.89 [0, 2.3]

Optimistic Pareto 10 11 [2.5, 22] 4.4 [0.9, 9.7] 2.2 [0.41, 5.2] 1.1 [0.19, 2.7]

Optimistic Pareto 20 12 [2.8, 23] 4.8 [1, 10] 2.4 [0.48, 5.5] 1.2 [0.22, 2.9]

Optimistic Weibull 5 2.1 [0, 5.4] 0.19 [0, 0.62] 0.022 [0, 0.086] 0.002 [0, 0.0086]

Optimistic Weibull 10 2.6 [0.44, 6.4] 0.24 [0.014, 0.76] 0.027 [0.0003, 0.11] 0.0024 [0, 0.011]

Optimistic Weibull 20 2.9 [0.52, 6.9] 0.25 [0.018, 0.81] 0.029 [0.00042, 0.11] 0.0027 [0, 0.012]

Pessimistic Lognormal 5 5 [1.4, 11] 0.63 [0.11, 1.6] 0.11 [0.011, 0.33] 0.016 [0.00085, 0.054]

Pessimistic Lognormal 10 4.6 [1.3, 10] 0.59 [0.1, 1.6] 0.1 [0.01, 0.3] 0.015 [0.00077, 0.051]

Pessimistic Lognormal 20 4.4 [1.1, 9.6] 0.55 [0.091, 1.5] 0.094 [0.0094, 0.29] 0.014 [0.00071, 0.048]

Pessimistic Pareto 5 18 [6.6, 33] 7.6 [2.4, 15] 3.8 [1.1, 8.1] 1.9 [0.51, 4.3]

Pessimistic Pareto 10 17 [5.9, 31] 7.1 [2.2, 14] 3.6 [1, 7.7] 1.8 [0.46, 4.1]

Pessimistic Pareto 20 16 [5.3, 30] 6.7 [2, 14] 3.4 [0.9, 7.2] 1.7 [0.42, 3.8]

Pessimistic Weibull 5 4.6 [1.2, 10] 0.41 [0.041, 1.3] 0.047 [0.0011, 0.18] 0.0042 [0, 0.019]

Pessimistic Weibull 10 4.3 [1, 9.6] 0.38 [0.037, 1.2] 0.044 [0.00098, 0.17] 0.004 [0, 0.017]

Pessimistic Weibull 20 4 [0.95, 9.1] 0.36 [0.034, 1.1] 0.041 [0.0009, 0.16] 0.0037 [0, 0.016]

Status Quo Lognormal 5 3.7 [0.82, 8.3] 0.46 [0.068, 1.3] 0.079 [0.0071, 0.24] 0.012 [0.00052, 0.04]

Status Quo Lognormal 10 3.6 [0.81, 8.2] 0.46 [0.067, 1.2] 0.078 [0.0069, 0.24] 0.011 [0.00051, 0.04]

Status Quo Lognormal 20 3.6 [0.79, 8.2] 0.46 [0.066, 1.2] 0.078 [0.0069, 0.24] 0.011 [0.00049, 0.04]

Status Quo Pareto 5 14 [3.7, 26] 5.6 [1.4, 12] 2.8 [0.66, 6.3] 1.4 [0.31, 3.3]

Status Quo Pareto 10 13 [3.7, 26] 5.5 [1.4, 12] 2.8 [0.65, 6.2] 1.4 [0.3, 3.3]

Status Quo Pareto 20 13 [3.6, 26] 5.5 [1.4, 12] 2.8 [0.64, 6.2] 1.4 [0.3, 3.2]

Status Quo Weibull 5 3.4 [0.69, 7.9] 0.3 [0.025, 0.94] 0.035 [0.00064, 0.13] 0.0031 [0, 0.014]

Status Quo Weibull 10 3.3 [0.69, 7.8] 0.3 [0.025, 0.94] 0.034 [0.00063, 0.13] 0.0031 [0, 0.013]

Status Quo Weibull 20 3.3 [0.68, 7.8] 0.3 [0.024, 0.92] 0.034 [0.00062, 0.13] 0.0031 [0, 0.013]
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Algorithm B3 Stan code for Weibull tail model

Appendix C: Results for Different Tail Locations

See Tables 5, 6, 7 and 8 and Figs. 6, 7 and 8. 

As discussed in the Methods section, we fit models with tail locations (distribution min-

imum values) of 4 and 10. We focused on the tail location of 10 for the results presented in 

the body of this article and we present further information about the tail location of 4 and 

the comparison between these models in this Appendix.

Moving the tail location from 4 to 10 generally increases the probability distributed to 

high severity values for both the Killed Gunfire and Total Shot variables. The comparison 

between the fitted probability models is shown in Fig. 5 (Killed Gunfire) and Fig. 6 (Total 

Shot). Figure 7 summarizes these comparisons by showing the difference in the forecasted 

cumulative probability between the models with tail location of 10 and 4. As described in 

the text, the comparison illustrates that the higher tail location substantially increases the 

forecast probability for the lognormal and Weibull models for Killed Gunfire, especially 

at higher severity thresholds. The effect of tail location has a much lesser impact on the 

Pareto model, though it still increases the probability somewhat. The impact of the tail 

location is generally much smaller on the Total Shot forecasts. The higher tail location 

slightly increases the forecast probability for the lognormal and Pareto models and slightly 

decreases the forecast probability of the Pareto model.

Figure 8 repeats the model evaluation measurement shown in Fig. 3 for the full data-

set. In this figure, the ELPD values for the xmin = 4 and xmin = 10 models should not be 

compared directly because the choice of tail location truncates the full data distribution. 
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Table 7  Event probability projections: killed gunfire, cumulative, tail location of 4

Projections for the cumulative (2019–2039) probability of at least one event occurring with severity for the 

Killed Gunfire variable meeting each of several threshold, for models with a tail location of  xmin = 4. For-

Scenario Model Window P2019–2039 

(x > 49)

P2019–2039 

(x > 60)

P2019–2039 

(x > 75)

P2019–2039 

(x > 100)

Optimistic Lognormal 5 1.5 [0.31, 3.6] 0.58 [0.096, 

1.6]

0.2 [0.025, 

0.57]

0.046 [0.004, 

0.14]

Optimistic Lognormal 10 1.8 [0.38, 4.5] 0.72 [0.12, 1.9] 0.25 [0.031, 

0.71]

0.057 [0.005, 

0.18]

Optimistic Lognormal 20 2 [0.41, 4.9] 0.78 [0.13, 2.1] 0.27 [0.034, 

0.78]

0.062 [0.0055, 

0.2]

Optimistic Pareto 5 25 [12, 43] 18 [7.7, 32] 12 [4.7, 23] 7.1 [2.4, 15]

Optimistic Pareto 10 30 [15, 50] 22 [9.5, 38] 15 [5.8, 28] 8.7 [3, 18]

Optimistic Pareto 20 33 [16, 53] 23 [10, 41] 16 [6.3, 30] 9.5 [3.3, 19]

Optimistic Weibull 5 2.1 [0.43, 5.4] 0.89 [0.13, 2.5] 0.32 [0.032, 

0.99]

0.081 [0.0043, 

0.28]

Optimistic Weibull 10 2.6 [0.53, 6.6] 1.1 [0.16, 3.1] 0.4 [0.04, 1.2] 0.1 [0.0055, 

0.34]

Optimistic Weibull 20 2.8 [0.58, 7.1] 1.2 [0.18, 3.3] 0.43 [0.043, 

1.3]

0.11 [0.006, 

0.38]

Pessimistic Lognormal 5 3.2 [0.68, 7.7] 1.3 [0.21, 3.3] 0.43 [0.056, 

1.2]

0.1 [0.0089, 

0.32]

Pessimistic Lognormal 10 3 [0.64, 7.1] 1.2 [0.2, 3.1] 0.4 [0.052, 1.2] 0.094 [0.008, 

0.3]

Pessimistic Lognormal 20 2.8 [0.6, 6.8] 1.1 [0.19, 2.9] 0.38 [0.048, 

1.1]

0.088 [0.0078, 

0.28]

Pessimistic Pareto 5 46 [25, 70] 34 [16, 57] 24 [10, 43] 15 [5.4, 29]

Pessimistic Pareto 10 44 [23, 68] 33 [15, 55] 23 [9.5, 41] 14 [5, 27]

Pessimistic Pareto 20 42 [22, 66] 31 [14, 53] 22 [8.8, 39] 13 [4.7, 26]

Pessimistic Weibull 5 4.5 [0.94, 11] 1.9 [0.29, 5.2] 0.7 [0.072, 2.1] 0.18 [0.0096, 

0.61]

Pessimistic Weibull 10 4.2 [0.88, 11] 1.8 [0.27, 4.9] 0.65 [0.066, 2] 0.17 [0.009, 

0.57]

Pessimistic Weibull 20 4 [0.83, 9.8] 1.7 [0.25, 4.7] 0.61 [0.062, 

1.9]

0.16 [0.0083, 

0.53]

Status Quo Lognormal 5 2.3 [0.5, 5.7] 0.92 [0.16, 2.4] 0.32 [0.041, 

0.91]

0.074 [0.0063, 

0.23]

Status Quo Lognormal 10 2.3 [0.49, 5.7] 0.92 [0.15, 2.4] 0.31 [0.04, 

0.89]

0.073 [0.0063, 

0.23]

Status Quo Lognormal 20 2.3 [0.49, 5.6] 0.91 [0.15, 2.4] 0.31 [0.04, 

0.89]

0.072 [0.0063, 

0.23]

Status Quo Pareto 5 37 [19, 59] 27 [12, 46] 18 [7.5, 34] 11 [3.9, 22]

Status Quo Pareto 10 37 [19, 58] 27 [12, 46] 18 [7.3, 34] 11 [3.9, 22]

Status Quo Pareto 20 37 [18, 58] 27 [12, 46] 18 [7.3, 34] 11 [3.8, 22]

Status Quo Weibull 5 3.3 [0.68, 8.4] 1.4 [0.21, 3.9] 0.51 [0.052, 

1.5]

0.13 [0.0069, 

0.44]

Status Quo Weibull 10 3.3 [0.68, 8.4] 1.4 [0.21, 3.8] 0.51 [0.052, 

1.6]

0.13 [0.0068, 

0.45]

Status Quo Weibull 20 3.3 [0.67, 8.4] 1.4 [0.21, 3.8] 0.5 [0.05, 1.6] 0.13 [0.0069, 

0.44]
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(In contrast, Fig. 3 shows the ELPD on the subset of data where x >  = 10, eliminating this 

truncation.) Fig. 8 illustrates the limited ability of the predictive performance statistic to 

discriminate between the models, with the ELPD distributions overlapping between mod-

els for each choice of variable and tail location. The greatest separation occurs for the tail 

location of 4, where the Pareto model is assessed to have somewhat lower performance 

because of its slightly less precise fit to the left side of the data distribution. In this case, 

the estimated ELPD is lower for the Pareto model than the alternatives in 87% of simu-

lations for the Killed Gunfire variable and in 77% of simulations for Total Shot. This is 

due to the small number of observations at high severity levels having limited impact on 

the model likelihood, and the other models performing slightly better in fitting the more 

numerous observations at lower severity (x < 10).

Tables 5 show the projection results for the models with tail location of 4, formatted 

identically to Table 3 from the body of the article.

matting follows Table 3

Table 7  (continued)
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Table 8  Event probability projections: total shot, cumulative, tail location of 4

Projections for the cumulative (2019–2039) probability of at least one event occurring with severity for the Total Shot variable meeting each of several threshold, for models 

with a tail location of  xmin = 4. Formatting follows Table 3

Scenario Model Window P2019–2039 (x > 100) P2019–2039 (x > 250) P2019–2039 (x > 500) P2019–2039 (x > 1000)

Optimistic Lognormal 5 38 [19, 60] 5.8 [1.5, 13] 1 [0.14, 2.8] 0.15 [0.011, 0.49]

Optimistic Lognormal 10 44 [23, 68] 7.2 [1.8, 16] 1.3 [0.18, 3.5] 0.19 [0.013, 0.61]

Optimistic Lognormal 20 47 [25, 71] 7.8 [2, 18] 1.4 [0.2, 3.8] 0.2 [0.014, 0.67]

Optimistic Pareto 5 83 [67, 95] 52 [32, 73] 31 [15, 50] 17 [7.2, 31]

Optimistic Pareto 10 89 [76, 98] 59 [38, 80] 36 [19, 58] 20 [9, 37]

Optimistic Pareto 20 91 [78, 98] 62 [41, 83] 39 [21, 61] 22 [9.8, 39]

Optimistic Weibull 5 35 [15, 59] 3.8 [0.51, 11] 0.45 [0.013, 1.7] 0.041 [9.8e-05, 0.18]

Optimistic Weibull 10 41 [19, 67] 4.7 [0.63, 13] 0.56 [0.016, 2.1] 0.051 [0.00012, 0.22]

Optimistic Weibull 20 43 [20, 70] 5.1 [0.69, 14] 0.61 [0.018, 2.2] 0.056 [0.00013, 0.24]

Pessimistic Lognormal 5 62 [37, 86] 12 [3.2, 27] 2.2 [0.32, 6.1] 0.33 [0.023, 1.1]

Pessimistic Lognormal 10 60 [35, 85] 11 [3.1, 25] 2.1 [0.3, 5.7] 0.31 [0.022, 1]

Pessimistic Lognormal 20 58 [33, 83] 11 [2.9, 24] 1.9 [0.28, 5.5] 0.29 [0.02, 0.95]

Pessimistic Pareto 5 97 [92, 100] 78 [58, 94] 54 [31, 77] 32 [15, 55]

Pessimistic Pareto 10 97 [90, 100] 76 [55, 93] 52 [30, 75] 31 [14, 52]

Pessimistic Pareto 20 96 [89, 100] 74 [53, 92] 49 [28, 73] 29 [14, 50]

Pessimistic Weibull 5 59 [31, 86] 8 [1.1, 22] 0.97 [0.028, 3.6] 0.089 [0.00021, 0.38]

Pessimistic Weibull 10 56 [29, 84] 7.5 [1, 21] 0.91 [0.027, 3.4] 0.083 [0.00021, 0.36]

Pessimistic Weibull 20 54 [28, 82] 7.1 [0.98, 19] 0.85 [0.025, 3.2] 0.078 [0.00019, 0.33]

Status Quo Lognormal 5 52 [29, 77] 9.1 [2.3, 20] 1.6 [0.23, 4.5] 0.24 [0.017, 0.79]

Status Quo Lognormal 10 52 [28, 77] 9 [2.4, 20] 1.6 [0.23, 4.5] 0.24 [0.017, 0.78]

Status Quo Lognormal 20 51 [28, 77] 9 [2.3, 20] 1.6 [0.23, 4.4] 0.24 [0.017, 0.78]

Status Quo Pareto 5 94 [84, 99] 68 [46, 87] 44 [24, 67] 25 [12, 44]

Status Quo Pareto 10 94 [84, 99] 67 [46, 87] 44 [24, 66] 25 [11, 44]

Status Quo Pareto 20 93 [83, 99] 67 [46, 87] 43 [24, 66] 25 [11, 44]

Status Quo Weibull 5 49 [24, 76] 6 [0.81, 17] 0.72 [0.021, 2.6] 0.065 [0.00016, 0.28]

Status Quo Weibull 10 48 [23, 76] 5.9 [0.81, 16] 0.71 [0.02, 2.7] 0.065 [0.00015, 0.28]

Status Quo Weibull 20 48 [23, 76] 5.9 [0.81, 16] 0.7 [0.02, 2.6] 0.064 [0.00016, 0.28]
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Appendix D: Supplemental Event Probability Projections

See Tables 9, 10 and 11.  

Table 9  Event probability projections: killed gunfire, single year, tail location of 10

Projections for the single-year (2019) probability of at least one event occurring with severity for the Killed 

Gunfire variable meeting each of several threshold, for models with a tail location of  xmin = 10. Formatting 

follows Table 3

Scenario Model Window P2019 (x > 49) P2019 (x > 60) P2019 (x > 75) P2019 (x > 100)

Optimistic Lognormal 5 2.1 [0, 5.9] 1.4 [0, 4.2] 0.85 [0, 2.9] 0.45 [0, 1.7]

Optimistic Lognormal 10 2.6 [0.27, 7.1] 1.7 [0.12, 5.1] 1 [0.049, 3.5] 0.56 [0.013, 2]

Optimistic Lognormal 20 2.8 [0.33, 7.6] 1.8 [0.16, 5.4] 1.1 [0.065, 3.7] 0.61 [0.018, 2.2]

Optimistic Pareto 5 2.6 [0, 7.1] 2 [0, 5.6] 1.5 [0, 4.3] 0.98 [0, 3.1]

Optimistic Pareto 10 3.3 [0.44, 8.5] 2.5 [0.27, 6.7] 1.8 [0.17, 5.2] 1.2 [0.087, 3.8]

Optimistic Pareto 20 3.5 [0.53, 9.1] 2.7 [0.34, 7.2] 2 [0.21, 5.6] 1.3 [0.11, 4]

Optimistic Weibull 5 2 [0, 5.8] 1.3 [0, 4] 0.75 [0, 2.6] 0.36 [0, 1.4]

Optimistic Weibull 10 2.5 [0.23, 7] 1.6 [0.096, 4.9] 0.92 [0.032, 3.2] 0.45 [0.0057, 1.7]

Optimistic Weibull 20 2.7 [0.29, 7.5] 1.7 [0.12, 5.2] 1 [0.043, 3.4] 0.49 [0.0083, 1.9]

Pessimistic Lognormal 5 4.4 [0.74, 11] 2.9 [0.36, 8.3] 1.8 [0.15, 5.6] 0.98 [0.045, 3.4]

Pessimistic Lognormal 10 4.1 [0.66, 11] 2.7 [0.33, 7.7] 1.7 [0.14, 5.3] 0.91 [0.041, 3.2]

Pessimistic Lognormal 20 3.9 [0.6, 10] 2.6 [0.3, 7.3] 1.6 [0.13, 5.1] 0.86 [0.037, 3]

Pessimistic Pareto 5 5.6 [1.2, 13] 4.2 [0.77, 11] 3.1 [0.47, 8.4] 2.1 [0.25, 6.2]

Pessimistic Pareto 10 5.2 [1.1, 13] 4 [0.69, 10] 2.9 [0.43, 7.9] 2 [0.23, 5.8]

Pessimistic Pareto 20 4.9 [0.96, 12] 3.7 [0.63, 9.6] 2.8 [0.39, 7.5] 1.9 [0.21, 5.5]

Pessimistic Weibull 5 4.3 [0.66, 11] 2.7 [0.29, 7.9] 1.6 [0.1, 5.2] 0.79 [0.022, 3]

Pessimistic Weibull 10 4 [0.59, 10] 2.5 [0.26, 7.4] 1.5 [0.094, 4.9] 0.74 [0.02, 2.8]

Pessimistic Weibull 20 3.8 [0.54, 10] 2.4 [0.24, 7] 1.4 [0.085, 4.7] 0.69 [0.018, 2.6]

Status Quo Lognormal 5 3.3 [0.45, 8.7] 2.2 [0.22, 6.3] 1.3 [0.094, 4.3] 0.72 [0.027, 2.5]

Status Quo Lognormal 10 3.3 [0.44, 8.7] 2.1 [0.22, 6.3] 1.3 [0.091, 4.3] 0.71 [0.026, 2.5]

Status Quo Lognormal 20 3.2 [0.44, 8.7] 2.1 [0.21, 6.2] 1.3 [0.09, 4.2] 0.71 [0.026, 2.5]

Status Quo Pareto 5 4.1 [0.72, 10] 3.1 [0.47, 8.2] 2.3 [0.29, 6.5] 1.6 [0.16, 4.7]

Status Quo Pareto 10 4.1 [0.71, 10] 3.1 [0.46, 8.2] 2.3 [0.29, 6.4] 1.6 [0.15, 4.7]

Status Quo Pareto 20 4.1 [0.7, 10] 3.1 [0.46, 8.2] 2.3 [0.28, 6.3] 1.5 [0.15, 4.6]

Status Quo Weibull 5 3.1 [0.4, 8.6] 2 [0.18, 6] 1.2 [0.062, 4] 0.58 [0.013, 2.2]

Status Quo Weibull 10 3.1 [0.39, 8.5] 2 [0.18, 6] 1.2 [0.061, 3.9] 0.58 [0.013, 2.2]

Status Quo Weibull 20 3.1 [0.39, 8.5] 2 [0.17, 5.9] 1.2 [0.06, 3.9] 0.57 [0.012, 2.2]
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Table 10  Event probability projections: total shot, single year, tail location of 10

Projections for the single-year (2019) probability of at least one event occurring with severity for the Total Shot variable meeting each of several threshold, for models with a 

tail location of  xmin = 10. Formatting follows Table 3

Scenario Model Window P2019 (x > 100) P2019 (x > 250) P2019 (x > 500) P2019 ( x > 1000)

Optimistic Lognormal 5 2.9 [0, 7.3] 0.43 [0, 1.3] 0.085 [0, 0.31] 0.015 [0, 0.061]

Optimistic lognormal 10 3.6 [0.58, 8.7] 0.53 [0.044, 1.6] 0.11 [0.0042, 0.37] 0.019 [0.00028, 0.075]

Optimistic Lognormal 20 3.9 [0.7, 9.3] 0.57 [0.055, 1.7] 0.12 [0.0054, 0.4] 0.021 [0.00037, 0.081]

Optimistic Pareto 5 4.5 [0, 11] 1.4 [0, 3.8] 0.61 [0, 1.7] 0.26 [0, 0.8]

Optimistic Pareto 10 5.6 [1.1, 13] 1.8 [0.25, 4.6] 0.76 [0.084, 2.1] 0.32 [0.026, 0.97]

Optimistic Pareto 20 6.1 [1.3, 14] 1.9 [0.31, 4.9] 0.82 [0.1, 2.3] 0.35 [0.033, 1]

Optimistic Weibull 5 2.9 [0, 7.4] 0.31 [0, 1] 0.041 [0, 0.17] 0.0042 [0, 0.019]

Optimistic Weibull 10 3.6 [0.55, 8.8] 0.39 [0.021, 1.3] 0.051 [0.00054, 0.2] 0.0052 [0, 0.023]

Optimistic Weibull 20 3.9 [0.66, 9.4] 0.42 [0.027, 1.4] 0.055 [0.00076, 0.22] 0.0057 [0, 0.026]

Pessimistic Lognormal 5 6.1 [1.6, 14] 0.92 [0.13, 2.6] 0.19 [0.013, 0.63] 0.033 [0.00093, 0.13]

Pessimistic Lognormal 10 5.7 [1.4, 13] 0.86 [0.11, 2.5] 0.17 [0.012, 0.59] 0.031 [0.00085, 0.12]

Pessimistic Lognormal 20 5.4 [1.3, 12] 0.81 [0.1, 2.3] 0.16 [0.011, 0.55] 0.029 [0.00078, 0.11]

Pessimistic Pareto 5 9.6 [2.9, 20] 3.1 [0.69, 7.4] 1.3 [0.23, 3.4] 0.56 [0.075, 1.6]

Pessimistic Pareto 10 9 [2.6, 19] 2.9 [0.62, 6.9] 1.2 [0.21, 3.2] 0.52 [0.068, 1.5]

Pessimistic Pareto 20 8.5 [2.3, 18] 2.7 [0.57, 6.6] 1.2 [0.19, 3.1] 0.49 [0.062, 1.4]

Pessimistic Weibull 5 6.1 [1.5, 14] 0.68 [0.063, 2.1] 0.09 [0.002, 0.35] 0.0092 [1.9e-05, 0.041]

Pessimistic Weibull 10 5.7 [1.4, 13] 0.63 [0.056, 2] 0.083 [0.0019, 0.33] 0.0085 [1.8e-05, 0.039]

Pessimistic Weibull 20 5.4 [1.2, 12] 0.59 [0.051, 1.9] 0.079 [0.0016, 0.31] 0.0081 [1.6e-05, 0.036]

Status Quo Lognormal 5 4.5 [0.94, 11] 0.68 [0.076, 2] 0.14 [0.0078, 0.47] 0.024 [0.00056, 0.095]

Status Quo Lognormal 10 4.5 [0.92, 11] 0.67 [0.076, 2] 0.14 [0.0077, 0.46] 0.024 [0.00055, 0.094]

Status Quo Lognormal 20 4.5 [0.9, 11] 0.67 [0.074, 2] 0.13 [0.0076, 0.46] 0.024 [0.00053, 0.093]

Status Quo Pareto 5 7.1 [1.7, 16] 2.3 [0.42, 5.6] 0.97 [0.14, 2.6] 0.41 [0.045, 1.2]

Status Quo Pareto 10 7.1 [1.7, 15] 2.3 [0.41, 5.6] 0.96 [0.14, 2.6] 0.41 [0.045, 1.2]

Status Quo Pareto 20 7 [1.6, 15] 2.3 [0.4, 5.6] 0.95 [0.14, 2.6] 0.41 [0.045, 1.2]

Status Quo weibull 5 4.5 [0.9, 11] 0.5 [0.038, 1.6] 0.065 [0.0012, 0.26] 0.0068 [1.1e-05, 0.03]

Status Quo Weibull 10 4.5 [0.9, 11] 0.49 [0.038, 1.6] 0.065 [0.0012, 0.26] 0.0067 [1e-05, 0.03]

Status Quo Weibull 20 4.5 [0.87, 11] 0.49 [0.037, 1.6] 0.064 [0.0011, 0.25] 0.0066 [1e-05, 0.03]
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Table 11  Event probability projections: total shot, cumulative, tail location of 10

Projections for the cumulative (2019–2039) probability of at least one event occurring with severity for the Total Shot variable meeting each of several threshold, for models 

with a tail location of  xmin = 10. Formatting follows Table 3

Scenario Model Window P2019–2039 (x > 100) P2019–2039 (x > 250) P2019–2039 (x > 500) P2019–2039 (x > 1000)

Optimistic Lognormal 5 44 [20, 71] 8.3 [1.6, 21] 1.8 [0.16, 5.6] 0.32 [0.011, 1.2]

Optimistic Lognormal 10 50 [24, 78] 10 [2, 26] 2.2 [0.2, 6.9] 0.39 [0.014, 1.5]

Optimistic Lognormal 20 53 [26, 81] 11 [2.2, 27] 2.4 [0.21, 7.5] 0.43 [0.015, 1.6]

Optimistic Pareto 5 60 [35, 83] 25 [9.1, 48] 12 [3, 26] 5.2 [0.99, 13]

Optimistic Pareto 10 67 [42, 89] 30 [11, 55] 14 [3.7, 32] 6.4 [1.2, 16]

Optimistic Pareto 20 70 [45, 91] 32 [12, 58] 15 [4.1, 34] 6.9 [1.4, 18]

Optimistic Weibull 5 43 [20, 71] 6.1 [0.8, 17] 0.85 [0.025, 3.3] 0.087 [0.00022, 0.4]

Optimistic Weibull 10 50 [24, 79] 7.5 [0.98, 21] 1 [0.031, 4] 0.11 [0.00028, 0.5]

Optimistic Weibull 20 53 [25, 81] 8.2 [1.1, 23] 1.1 [0.033, 4.4] 0.12 [0.00031, 0.55]

Pessimistic Lognormal 5 69 [40, 93] 17 [3.5, 40] 3.7 [0.34, 12] 0.69 [0.024, 2.6]

Pessimistic Lognormal 10 67 [37, 92] 16 [3.3, 38] 3.5 [0.32, 11] 0.65 [0.023, 2.4]

Pessimistic Lognormal 20 65 [35, 90] 15 [3.1, 36] 3.3 [0.3, 10] 0.61 [0.021, 2.3]

Pessimistic Pareto 5 84 [62, 98] 45 [19, 75] 23 [6.6, 48] 11 [2.2, 27]

Pessimistic Pareto 10 82 [59, 97] 43 [18, 73] 22 [6.2, 46] 10 [2, 25]

Pessimistic Pareto 20 81 [57, 97] 42 [17, 71] 21 [5.8, 44] 9.6 [1.9, 24]

Pessimistic Weibull 5 68 [38, 93] 13 [1.8, 34] 1.8 [0.055, 7] 0.19 [0.0005, 0.89]

Pessimistic Weibull 10 66 [36, 92] 12 [1.6, 32] 1.7 [0.051, 6.6] 0.18 [0.00047, 0.82]

Pessimistic Weibull 20 64 [34, 91] 11 [1.5, 30] 1.6 [0.048, 6.1] 0.17 [0.00043, 0.77]

Status Quo Lognormal 5 59 [31, 86] 13 [2.6, 31] 2.8 [0.25, 8.7] 0.51 [0.017, 1.9]

Status Quo Lognormal 10 58 [30, 86] 13 [2.5, 31] 2.8 [0.25, 8.7] 0.5 [0.017, 1.8]

Status Quo Lognormal 20 58 [30, 85] 13 [2.5, 31] 2.7 [0.25, 8.6] 0.5 [0.017, 1.9]

Status Quo Pareto 5 75 [50, 94] 37 [15, 64] 18 [4.9, 38] 8.1 [1.6, 20]

Status Quo Pareto 10 75 [50, 94] 36 [14, 64] 18 [4.9, 38] 8 [1.6, 20]

Status Quo Pareto 20 75 [50, 94] 36 [14, 64] 17 [4.8, 38] 8 [1.6, 20]

Status Quo Weibull 5 58 [30, 86] 9.5 [1.3, 26] 1.3 [0.04, 5.2] 0.14 [0.00036, 0.64]

Status Quo Weibull 10 58 [29, 86] 9.4 [1.3, 26] 1.3 [0.039, 5.1] 0.14 [0.00036, 0.64]

Status Quo Weibull 20 58 [29, 86] 9.3 [1.3, 26] 1.3 [0.039, 5] 0.14 [0.00036, 0.63]
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