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ABSTRACT
While public debate over gun control in theUnited States has often hinged on individual publicmass shoot-
ing incidents, legislative action should be informed by knowledge of the long-term evolution of these
events. We present a new Bayesian model for the annualized rate of public mass shootings in the United
States based on a Gaussian process with a time-varying mean function. While we present specific findings
on long- and short-term trends of these shootings in the U.S., our focus is on understanding the role of
model design and prior information in policy analysis. Using a Markov chain Monte Carlo inference tech-
nique, we explore the posterior consequences of different prior choices and explore correlations between
hyperparameters.Wedemonstrate that the findings about the long-termevolution of the annualized rate of
public mass shootings are robust to choices about prior information, while inferences about the timescale
and amplitude of short-term variation depend sensitively on the prior. This work addresses the policy impli-
cations of implicit and explicit choices of prior information in model design and the utility of full Bayesian
inference in evaluating the consequences of those choices.

1. Introduction

Recent high-profile public mass shootings in the United States
like the events at the Emanuel AME Church in Charleston; San
Bernadino, CA; Orlando, FL; Las Vegas, NV; and Parkland, FL
have raised public awareness of the dangers posed by this type
of crime and raised sociological interest in understanding the
motivations and occurrence rates of such events. A particular
question facing elevated public, political, and scholarly scrutiny
is whether the rate of public mass shootings has increased
significantly over time and how that rate responds to policy
interventions.

High-profile disagreements between researchers indicate the
pivotal role that choices in both data selection and model
design play in the policy interpretation of this history. A
2013 US Federal Bureau of Investigation (FBI) report on pub-
lic mass shootings relied on descriptive statistics to show a
150% increase in the annualized rate of events they classify as
“Active Shooter Incidents” between the periods 2000–2006 and
2007–2013 (Blair and Schweit 2013). Lott (2014) responded
directly to the FBI report, using a linear regression approach
while also reevaluating sources of bias, reviewing data consis-
tency, and redefining the period under consideration to con-
clude that no statistically significant increase is identifiable.
Lott’s work has been the subject of persistent controversy. Using
a statistical process control (SPC) analysis of the duration
between successive events, Cohen et al. (2014) found that the
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rate of public mass shootings has tripled over the 4-year period
2011–2014.

Inherent to each of these disparate approaches are inevitable
and important model design assumptions such as the time
period and timescale over which changes should occur, as well
as choices about what type of events and incidents to include.
While the latter has been the subject of extensive debate (see Fox
and Levin 2015 for a recent discussion), the role of the model
design choices has not been systematically studied. In particular,
no previous study has applied a Bayesianmethodology to explic-
itly define the prior information about timescales used to explain
the annualized rate observations and provide a self-consistent
basis for comparison between alternate assumptions. Further-
more, Bayesian nonparametric approaches have enhanced capa-
bilities for analyzing short timescale variation in the response
function, like responses to policy interventions, compared to
linear or low-dimensional parametric or nongenerative model-
ing approaches.

We introduce a Bayesian statistical framework for modeling
the rate of public mass shootings, using prior distributions over
the hyperparameters of a nonparametric Gaussian process com-
ponent to specify prior information about the underlying gen-
erative process. We use these hyperpriors to supply two starkly
different probabilistic constraints on the timescale parameter
and explore the impact from this choice on inferences.

We adopt a commonly cited public mass shooting dataset
and definition fromMother Jones and perform inference under
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our Gaussian process model using a probabilistic programming
language. We show that the choice of prior on the timescale
parameter has a minimal effect on inferences about long
timescale variations, but a substantial effect on inference about
short timescale variation like those relevant to isolating changes
in response to policy interventions. We discuss how the amount
of prior information asserted about the timescale for variation
mediates a relationship between sensitivity and uncertainty in
the measured mass shooting rate, indicating that analysts or
policymakers must express a belief about the relevant timescale
for policy changes to have effect to make judgments about
outcomes from available data.

2. Data

The definition of a public mass shooting is not universally
agreed upon, and even when a firm definition is adopted
there can be ambiguity in how to apply it to the complex
and uncertain circumstances of these chaotic events. In this
work, we do not present original data on occurrences in
the United States, address the myriad considerations inher-
ent in defining a mass shooting event, or seek to resolve
the causal issues of why the growth rate may have changed
over time. Instead, we adopt the Mother Jones database
(http://www.motherjones.com/politics/2012/12/mass-shootings-
mother-jones-full-data; retrieved for this study on February 24,
2018 and complete through the end of 2017; incomplete 2018
data not considered for this study) of public mass shootings,
with criteria for inclusion described in Follman (2014):

“[The database] includes attacks in public places with four or
more victims killed, a baseline established by the FBI a decade ago.
We excluded mass murders in private homes related to domes-
tic violence, as well as shootings tied to gang or other criminal
activity.”

Follman (2014) discussed their motivations for these criteria
and provided some examples of prominent incidents excluded
by the criteria, such as the shooting at Ft. Hood in April 2014.
Note that the federal threshold for investigation of public mass
shootings was lowered to three victim fatalities in January of
2013, and the Mother Jones database includes shootings under
this more expansive definition starting from that date. To main-
tain a consistent definition for publicmass shootings throughout
the studied time period, we only consider shootings with four or
more victim fatalities.

Our primary dataset is the count of incidents reported in
this database per calendar year from 1982 through the end of
2017. We include incidents labeled as both “Mass” or “Spree” by
Mother Jones.

3. Models

Wepresent an original Bayesianmodel for the annualized occur-
rence rate of public mass shooting events. Our model design
merges a parametric model, with straightforward interpreta-
tions of posterior marginalized parameter inferences, with a
nonparametric model that captures and permits discovery of
unspecified trends.

We adopt aGaussian processmodel (see, e.g., Rasmussen and
Williams 2005; Roberts et al. 2013 for reviews or Rothe 2010;

Heaton 2014; Sun et al. 2014 for recent applications in the pol-
icy and politics domains) as a nonparametric description of the
time evolution of the annualized occurrence rate. The Gaussian
process describes deviations from a mean function by a covari-
ance matrix that controls the probability of the deviation as a
function of the time differential between points.

Wemeasure the time vector x in years since 1982 and the out-
come vector z as the number of occurrences per year. Our like-
lihood assumes that the occurrence rate y is specified by expo-
nentiated draws from the mean and covariance functions, and
the observed outcome data are negative binomial-distributed
according to the rate:

y(x) ∼ N(μ(x), k(x)2) (1)

z(x) ∼ NB(exp(y(x)), φ), (2)

whereN is the normal (with scale parameterized by the standard
deviation) and NB is the negative binomial distribution (with
scale parameterized by the overdispersion relative to a Poisson
distribution).

We adopt a linear mean function and a squared-exponential
covariance function. The mean function μ(x) is simply:

μ(x) = μ0 + μb x. (3)

Note that, because of the exponent in the likelihood, the lin-
ear mean function corresponds to an exponential function for
the evolution of the rate of shootings per year.

The squared-exponential covariance function is expressed
as

k(x)i, j = η2 exp

(
−ρ2

D∑
d=1

(xi,d − x j,d )
2

)
+ δi, j σ

2, (4)

where the hyperparameter η controls the overall strength of
covariance, ρ controls the timescale over which functions drawn
from the process vary, σ controls the baseline level of variance,
and D = 1 for this one-dimensional problem.

The role of each component of the Gaussian process will
depend largely on the timescale parameter ρ, where ρ−1 is mea-
sured in years. When the timescale is short, the model effec-
tively divides the response into a long-term (timescale of the
range of the data, i.e., decades) parametric effect and a short-
term (timescale of order the spacing of the data, i.e., years) non-
parametric effect. This approach gives us the full flexibility of the
Gaussian process for predictive applications, while still allow-
ing us to make interpretable, parametric inferences on the long-
term evolution of the system.

We apply the following prior and hyperprior distributions to
provide weak information (see, e.g., Gelman et al. 2009) about
the scale of the relevant parameters in the adopted unit system:

ρ−1 ∼ �(αρ, βρ )

η2 ∼ C(2.5)
σ 2 ∼ C(0, 2.5)
μ0 ∼ N(0, 2)
μb ∼ N(0, 0.2)

φ−1 ∼ C(0, 5),

http://www.motherjones.com/politics/2012/12/mass-shootings-mother-jones-full-data
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where � is the gamma distribution; C is the half-Cauchy distri-
bution; the parametersη2,σ 2, andφ−1 are constrained to be pos-
itive; and we apply the constraint ρ−1 > 1 to enforce timescales
>1 year (the spacing of our data).

We fit the model to the 35 annual observations of theMother
Jones dataset and do model interpolation and prediction over a
grid of 176 quarters from 1980 to 2024.We describe the configu-
ration and performance of the simulation used to generate sam-
ples from the model posterior in the supplementary materials.

3.1. Choice of Prior Distribution

We explore the consequences of different choices for the prior
distribution on ρ−1. To facilitate that analysis, we fit the model
twice with two different hyperparameter specifications provided
as data.Wewill visualize and discuss these hyperprior choices in
the next section.

We express these choices using the α and β parameters of the
gamma hyperprior on ρ−1, labeled as αρ and βρ . In particular,
we explore (αρ, βρ ) = (4, 1) and (1, 1/100). These correspond
to prior distributions with standard deviations of 2 and 100
years, respectively. On top of the linear trend in the mean func-
tion, the former represents a “strong” prior expectation that the
annualized rate of public mass shootings evolves on a timescale
of a few years, and the latter represents a “weak” (nearly flat)
expectation for variations on timescales from a few years to a
few centuries.

We consistently make explicit in the text and title figures to
indicate which of the two models we refer to throughout this
article.

3.2. Posterior Simulations

To assess goodness of fit, we inspect simulated draws of the
Gaussian process from the posterior. Posterior predictive checks
and further tests of the fitted model are described in the online
supplementary materials. Here, we examine the model for the
underlying public mass shooting rate in detail.

In Figure 1, we plot the posterior predictive distribution
for the annualized mass shooting rate from the model with
the strong prior on ρ−1. The figure shows simulations across
a grid of timepoints subsampled between years and extending
beyond the last year included in the dataset (2017), effectively
interpolating between and extrapolating from the observations
for illustrative purposes.

The Gaussian process captures an increase in themass shoot-
ing rate over the decades and some fluctuations against that
trend during certain periods. The model does not show any evi-
dent deviations from the evolution of the observational time
series, although comparison to the data highlights several years
with outlying mass shooting totals (e.g., 1993 and 1999). The
extrapolated period (>2017) suggests a range of possible future
rates of growth from the 2017 level.

In Figure 1, the comparison between draws of themean func-
tions (red) and themodel posterior (blue) suggests that themean
function captures most of the modeled variation in the shoot-
ing rate over time.We can understand the behavior of the Gaus-
sian process covariance function by isolating it from the mean

Figure . The posterior predictive distribution of the Gaussian process for the annu-
alized mass shooting rate under the strong prior on ρ−1 . The mean of the posterior
predictive distribution of the Gaussian process is shownwith the solid blue line, and
the shaded region shows the  and th percentile intervals of the posterior. The
red lines represent randomdraws from themean function to visualize the inference
on the long-term time evolution of the mass shooting rate.

function, as shown in Figure 2. The fact that the interquar-
tile contours never cross the mean (μ0) indicates that there is
never>75% probability that the annualized trend deviates from
the linear mean function. However, there are times when the
interquartile range approaches the mean.

Next, we visualize the latent Gaussian process under theweak
prior for ρ−1 in Figure 3. The figure shows that the Gaussian
process does not capture significant short-timescale variations,
a direct consequence of loosening the prior to admit longer-
timescale covariance functions. This model also generally
expresses lower uncertainty in the annual public mass shoot-
ings rate. Averaged over the years on which we do prediction,
the model with the strong prior has a 5% higher uncertainty in
the annualizedmass shooting rate than themodel with the weak
prior. Consistent with the reliance on the parametric, linear
mean function, the extrapolated predictions do not account for
any substantial probability of decrease in the rate of public mass
shootings after 2017. Figure 4 underscores the dominance of the
mean function over the covariance function in this model by
visualizing the isolated Gaussian process covariance function,
which shows virtually no deviation from the mean.

Figure . Visualization of the observed rate of publicmass shootings over time (top)
and Gaussian process covariance function for the model with the strong prior on
ρ−1 (bottom), isolated by subtracting themean function from the posterior predic-
tive distribution of the simulated Gaussian process rates (y2). The shaded regions
show the interquartile and [–]th percentile ranges.
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Figure . Posterior distribution of the Gaussian process for the annualized mass
shooting rate under the weak prior on ρ−1 . Plotted elements are as in Figure ,
except that the random draws (red lines) are omitted for clarity.

Figure . Visualization of the isolated Gaussian process covariance function for the
model with the weak prior on ρ−1 , as in Figure .

3.3. Posterior Correlations

Because we adopt a fully Bayesian approach, we can inter-
rogate samples from the posterior distribution to understand
correlations and dependencies between parameters in our
model. We fit a simple linear model to understand relation-
ships between key parameters in the multivariate posterior
distribution.

First, we fit a model for ρ−1 as a function of the other major
parameters of the model with the strong prior on ρ−1. Table 1
shows that the most significant correlation is between ρ−1 and
η. When we visualize this correlation (Figure 5), we observe that
the level of posterior curvature associated with these two vari-
ables is small in this model, though significant. The implication

Table . Linearmodel regression coefficients summarizingposterior dependen-
cies in the model with the strong prior on ρ−1 . The predictors have been stan-
dardized so the coefficients of the linear model are directly comparable.

Coefficient Value Std. error Sign.

Intercept . .
η . . ∗∗
μ0 . . ∗∗
μb . . ∗∗
NB

φ−1 . . ∗∗
σ . . ∗∗

Figure . Visualization of a two-dimensional slice, for η and ρ−1 , of the posterior
from the model with the strong prior on ρ−1 . The red shading indicates the density
of posterior samples.

is that our choice of prior on ρ−1 implies some constraint on
the amplitude of short timescale variations the Gaussian pro-
cess will recover. The results show that ρ−1 is effectively inde-
pendent of the intercept for the mean function (μ0) and only
very weakly dependent on the mean function slope (μb), as well
as the dispersion parameters (σ and NBφ−1 ). This indicates that
our choice of prior will not substantially affect inferences on
these parameters or the aspects of the Gaussian process they
control.

However, the above correlation results apply only to the range
of ρ−1 values admitted by our strong prior. The relationships
between variablesmay differ in posteriors that have support over
larger ranges of ρ−1, as in our model with the weak prior.

When we explore the same correlation in the posterior of
the model with a weak prior on ρ−1, as shown in Table 2 and
Figure 6, we find somewhat different results. Again, η is the
parameter most significantly correlated with ρ−1, but now the
2D posterior visualization shows that this correlation is substan-
tially nonlinear. In particular, for this model, η is constrained to
much smaller values when the timescale ρ−1 is small. In other
words, in models that permit variations from themean function
on timescales smaller than the observational range (∼35 years),
the amplitude of those variations is constrained to be very small.
As a result, as we have seen, the importance of the covariance
function is minimized under this prior regardless of the value of
ρ−1. As in the first model, the ρ−1 has a negligible dependence
on the other model parameters.

Table . Regression coefficients for the model with the weak prior on ρ−1 , as in
Table .

Coefficient Value Std. error Sign.

Intercept . .
η . . ∗∗
μ0 . . ∗∗
μb − . . ∗∗
NB

φ−1 − . . ∗∗
σ − . . ∗∗
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Figure . Same as Figure , but for the model with the weak prior on ρ−1 .

4. Results

4.1. Parameter Inferences

In Figure 7, we show the marginalized posterior distributions of
the parameters of the Gaussian process under the strong prior
on ρ−1. The comparison of the posterior and prior distributions
shows strong evidence from the data to identify most hyperpa-
rameters. The posterior for μ0 shows a concentration around
a baseline rate of exp(−1) ∼ 0.4 to exp(1) ∼ 3 public mass
shootings per year at the start of the dataset, 1982, reflecting
a variance much smaller than the corresponding prior. The
negative binomial overdispersion parameter (φ−1) is concen-
trated toward very small values� 1, indicating that the Poisson
distribution is a good approximation to the variance in the
observations. The amplitude of the Gaussian process covariance
function, η, is strongly shifted from the mode of the prior

distribution, to a mean of exp(0.5) ∼ 1.6 public mass shootings
per year. The variance of the Gaussian process covariance
function, σ , has a posterior variance much smaller than the
prior distribution.

The posterior distribution of ρ−1 is a notable exception. It
shows no visual deviation from the prior distribution, indicating
that this parameter is not identified by the observations. There-
fore, as we have seen, the choice of prior on this parameter will
have significant consequences on the posterior.

Next we explore the same marginalized posteriors under the
weak prior on ρ−1, in Figure 8. In this model, most parameters
have posterior distributions nearly identical to their distribu-
tions under the strong prior on ρ−1. In particular, the conclu-
sions about the mean function parameters (μ0 and μb), φ, and
σ seem robust to the choice of prior. This is consistent with our
findings in Section 3.3.

Importantly, the ρ−1 parameter is again largely nonidenti-
fied. Its posterior distribution generally follows theweaker prior,
although the likelihood suppresses the posterior density for the
very smallest values of ρ−1. The consequence is that the models
sampled from theGaussian process have very long timescales for
their covariance function. As we saw in Section 3.3, the weaker
prior also has some effect on the amplitude, η, which skews
toward larger values than in the first model.

These results validate our decision in Section 3.1 to focus on
ρ−1 as a means of understanding the role of prior information
in this problem.

4.2. Predictions

We calculate the posterior probability that the annualized rate
of public mass shootings has increased in the US since 1982
(μb > 0). For the model with the strong prior on ρ−1, this
probability is 98%; for the model with the weak prior, it is

Figure . Sampled posterior distribution for the hyperparameters of the model with the strong prior on ρ−1 (histogram) and corresponding hyperprior distribution (blue
line).
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Figure . Like Figure , but for the model with the weak prior on ρ−1 .

97%. This indicates strong statistical evidence for a long-term
increase in the annualized rate of public mass shootings over
the past three decades, regardless of our choice of prior for the
timescale parameter, ρ−1.

In linear terms, the mean percentage increase in the rate of
public mass shootings is found to be 390 [150, 910]% for the
model with the strong prior on ρ−1 and 390 [150, 890]% for
the model with the weak prior (quoted ranges are 1σ ). While
the uncertainty interval is large, the 1σ estimate suggests at
least a doubling in the annualized rate of public mass shoot-
ings over these three decades, and more likely a quintupling or
greater increase. Again, this result is effectively independent of
the choice of prior.

For comparison, the U.S. population has grown from
∼ 231 million to 323 million residents (see WorldBank data,
http://data.worldbank.org/indicator/SP.POP.TOTL?cid=GPD_1
&end=2016&locations=US&start=1982), an increase of 40%,
over that same period. The model posterior suggests that the
growth rate of public mass shootings has surpassed the rate of
population growth with high confidence: 95% for the model
with the strong prior on ρ−1 and 95% for the model with the
weak prior.

However, any inferences about the response to events or
policy interventions within this period may depend on design
choices because they will focus on small timescale variations
that are sensitive to the prior information provided on ρ−1 (see
Section 3.2).

Perhaps the most salient short timescale variation captured
by the model with the strong prior on ρ−1 is a dip in the annu-
alized rate of public mass shootings in the years from about
2000 to 2005 (see Figure 2). The model has no features that
would seek to explain the causal origin of this dip, but does con-
strain its size. There is a notable juxtaposition in timing with the
Columbine High School massacre (1999), which is understood
to have spawned dozens of “copycat” threats and attacks over

time (Kostinsky et al. 2001; Simon 2007; Larkin 2009). Appar-
ently this phenomenon did not translate to elevated nationwide
incidence of public mass shootings beyond the underlying long-
term trend captured by the mean function. Under the model
with the weak prior on ρ−1, there is no short timescale response
(Figure 4).

The largest positive deviation from the mean function
under the strong prior occurs between about 1988 and 1993
(Figure 2). During that time, the mean function itself is very
small (Figure 1), so this does not represent a large absolute
deviation.

Figure 2 does also show a small elevation from the mean
function between about 2011 and 2014. Cohen et al. (2014)
reported a tripling in the rate ofmass shootings during this same
time frame on the basis of an SPC methodology. While we have
reported that the increase in the rate of public mass shootings
over the past three decades is likely to be a factor of several, we
find much less evidence for such a dramatic increase over this
4 year period. Our model with the strong prior on ρ−1 predicts
better than even odds (60%) that there was an increase during
that time, but the probability that it was as high as a tripling is
small (3%). Themean of the posterior predictive distribution for
the 3 year increase in the annualized mass shooting rate under
this model is 27% (see Figure 9).

As noted in Section 3.2, there is also a tradeoff between the
sensitivity to identifying short timescale variation in the evolu-
tion of the mass shooting rate and the level of uncertainty in the
year-to-year estimate of the annualizedmass shooting rate, con-
trolled by the expression of prior information on the timescale
parameter. In this case, the impact of the prior choice on the
uncertainty is small (5% as quoted in Section 3.2) and manifests
as only minor difference between the probabilities we report for
the two models in this section.

These findings illustrate that, for analysis of timeseries
data in low-frequency event domains like mass shootings, it is

http://data.worldbank.org/indicator/SP.POP.TOTL?cid=GPD_1&end=2016&locations=US&start=1982
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Figure . Comparison of estimates for the relative annualized rate of mass shoot-
ings between  and . The shaded distribution shows the posterior from our
model with the strong prior on ρ−1 . The dotted line shows the result of Cohen et al.
().

critical to a policy analyst’s role to carefully and consciously
assert prior information about the relevant timescale for inter-
ventions to have an effect to support policymaking through
assessment of available data. As we have shown, failing to assert
significant prior information about the timescale parameter can
lead inevitably to the conclusion that short timescale variation
does not occur. In a policymaking context, this is a recipe for
inaction.

4.3. Comparison to SPCMethodology

The comparison between the SPC and Gaussian process
methodologies is an interesting contrast in approach to time-
series modeling of rare events. In this context, the SPCmethod-
ology can be viewed as a sequence of hypothesis tests for a
change in the frequency of an event type (see Woodall 2018
for a discussion). Adopting a common heuristic, Cohen et al.
interpret nine or more sequential occurrences where the time
between events is lower than the previous running average of
time between events as evidence for a significant shift in the
underlying frequency.

The most fundamental difference between the approaches
is the quantity targeted for analysis: time between events ver-
sus annualized rate. While the Gaussian process methodology
requires some timescale for binning of the raw data, the SPC
methodology has sensitivity to frequencies on any timescale
because it directly analyzes the time between events. However,
the choice of significance threshold (how the running average
is constructed and the threshold of number of deviant events
in sequence) effectively expressed prior information about the
timescale for change in the measured rate.

Another contrast is between the hypothesis testing frame-
work of SPC and the generative modeling framework of the
Gaussian process. The generative model supports hypothesis
testing of posterior quantities, while also providing a continuous
model of the underlying evolution of the test quantity. A fun-
damental benefit of the generative model is the opportunity to

assess uncertainty of test statistics from the fully Bayesian poste-
rior distribution, as well as the opportunity to perform inference
on model parameters (see Section 4.2). The generative model
can also be used for additional tasks such as interpolation, to
predict the probability distribution of rates at any arbitrary time,
and extrapolation, to predict the probability distribution of rates
outside of the observed time range.

A more subtle distinction between the two approaches is the
data effectively included in hypothesis tests for changes in fre-
quency. SPC implies a sequential approach, where each contigu-
ous segment of observations is compared only to some average
across observations directly preceding it. The Gaussian process
model fit is constrained by all observations simultaneously, so
that the estimate of the underlying event rate is influenced by
the nearest observed annualized rate as well as all observations
before and after.

This discussion contrasts two of a myriad of approaches to
extract insight from timeseries data. More generally, we advo-
cate for the use of generative models, which explicitly specify
all elements of model design including prior information as in
Section 3.1. Further, we recommend the use of fully Bayesian
inference, so that the consequences of choices about prior dis-
tributions including parameter correlations can be straightfor-
wardly explored as in Section 3.3. The model we define in
Section 3 has the added benefit of combining parametric and
nonparametric components, to allow for direct inference on
salient model parameters as well as the capture of subtle non-
linearities in empirical data as in Section 4.2.

5. Conclusion

We have designed and implemented a negative binomial regres-
sion model for the annualized rate of public mass shootings
in the United States based on a Gaussian process with a time-
varying mean function. This design yields a predictive model
with the full nonparametric flexibility of a Gaussian process
to explain short timescale variation, while retaining the clear
interpretability of a parametric model by isolating and jointly
modeling long-term (timescale of decades) evolution in the
shooting rate. We have applied this model to a commonly cited
historical dataset of U.S. public mass shootings and explored
the implications of explicit choices about the prior information
provided on the timescale parameter for the Gaussian process
covariance function in this model. Our primary conclusions are
as follows:

� We use posterior simulations and predictive checks to
demonstrate the efficacy of the Gaussian process model in
generating and fitting the observations of the annual mass
shooting rate from the Mother Jones database.

� With a 98% probability, we find that the annualized rate of
public mass shootings has risen over the past three decade.
The posterior mean estimate for the increase in the public
mass shooting rate since 1982 (390 [150, 910]%) suggests
at least a doubling, and more likely a quintupling, of the
annualized rate over that time.

� We explore the effects of prior choices on the posterior
and visualize posterior curvature between hyperparame-
ters.We demonstrate that the choice of prior has negligible
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impact on inferences about the long timescale variation of
mass shooting events, but significant impact on inferences
about short timescale variations that may be relevant to
evaluating policy interventions.

� We contrast our generative modeling approach using
fully Bayesian inference to the statistical process control
(SPC) methodology, and discuss wider implications for
choices in model design for policy analysis of timeseries
data.

As future work, we would like to expand the model for pub-
licmass shootings presented here to address causal relationships
with policy-relevant factors. In particular, the Gaussian process
can be expanded to incorporate additional predictors such as
data frommultiple countries or indicators of policy changes like
firearm sales rates. A multi-output Gaussian process could also
model covariant outcomes like number of fatalities or type of
weapon used. Combined with a review of the choices in data
collection and a careful analysis of the role of prior information
in determining the model posterior, this work can lead to policy
recommendations to help control the occurrence of these events
in the future.
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