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ABSTRACT

Historically, light curve studies of supernovae (SNe) and other transient classes have focused on
individual objects with copious and high signal-to-noise observations. In the nascent era of wide field
transient searches, objects with detailed observations are decreasing as a fraction of the overall known
SN population, and this strategy sacrifices the majority of the information contained in the data about
the underlying population of transients. A population level modeling approach, simultaneously fitting
all available observations of objects in a transient sub-class of interest, fully mines the data to infer
the properties of the population and avoids certain systematic biases. We present a novel hierarchical
Bayesian statistical model for population level modeling of transient light curves, and discuss its
implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply
this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting
of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with
9,176 parameters under our model. Our hierarchical model fits provide improved constraints on light
curve parameters relevant to the physical properties of their progenitor stars relative to modeling
individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of
unseen light curve characteristics from the model hyperparameters, addressing observational biases in
survey methodology. We view this modeling framework as an unsupervised machine learning technique
with the ability to maximize scientific returns from data to be collected by future wide field transient
searches like LSST.

Subject headings: methods: statistical — surveys: Pan-STARRS1 — supernovae: general

1. INTRODUCTION

The majority of luminous transients in the universe are
core-collapse supernovae (CC-SNe), marking the explo-
sive deaths of massive stars (Heger et al. 2003; Smartt
2009). Stellar evolution theory, as well as both detailed
observations of the explosive transient and fortuitous pre-
explosion observations of the progenitor star, point to
progenitor initial mass as the primary factor determin-
ing stars’ eventual death state. Metallicity, rotation rate,
binarity, and other properties play important secondary
roles, and permutations of these parameters are likely
responsible for the extreme diversity of core-collapse su-
pernovae phenomenology observed in the universe (Heger
et al. 2003; Smartt 2009; Smith et al. 2011; Ekström et al.
2012; Jerkstrand et al. 2013). The progenitor star mass
distribution for each SN type, as well as the distribu-
tion of these secondary factors, have far reaching impli-
cations throughout astrophysics, influencing the theory
of stellar evolution (Groh et al. 2013), galactic chemical
evolution (Nomoto et al. 2013), hydrodynamic feedback
in galaxy formation (Stilp et al. 2013), and astrobiology
(Lineweaver et al. 2004).

Studies of individual transients typically focus on well
observed cases within each object class, capitalizing on
the availability of detailed and high signal-to-noise ob-
servations to facilitate comparison to finely tuned hydro-
dynamic explosion simulations and analytic light curve
models (e.g. Mazzali et al. 2003; Utrobin & Chugai

nsanders@cfa.harvard.edu
1 Harvard-Smithsonian Center for Astrophysics, 60 Garden

Street, Cambridge, MA 02138 USA
2 Department of Statistics, University of Warwick, Coventry,

UK

2008). Syntheses of these observations, studies of large
samples of SNe of a given class, are then typically com-
posed of samples culled from these well observed cases
(see e.g. Nomoto et al. 2006; Bersten & Hamuy 2009;
Jerkstrand et al. 2013). However, the properties of lu-
minous and/or high signal-to-noise objects within a sur-
vey sample may be systematically different from their
lower luminosity / signal-to-noise counterparts, and tra-
ditional targeted transient searches themselves are inher-
ently biased towards particular SN progenitor properties
like high metallicity (Sanders et al. 2012a,b). To derive
truly robust and unbiased inferences about SN progenitor
populations, it is therefore necessary to study transient
samples in a fashion as complete and observationally ag-
nostic as possible.

Here we discuss a methodological framework for the
simultaneous modeling of multi-band, multi-object pho-
tometric observations from wide field transient surveys,
which addresses certain biasing factors inherent to tran-
sient searches. This method is rooted in “hierarchi-
cal” and “multi-level” Bayesian analysis, where informa-
tion about similar events within a sample is partially
pooled through a hierarchical structure applied to the
joint prior distribution (see Gelman et al. 2013 and ref-
erences therein; see Mandel et al. 2009 for applications to
SN Ia light curves). We adopt Hamiltonian Monte Carlo
as a computational technique to efficiently explore the
high-dimensional and strongly correlated posterior dis-
tribution of this hierarchical model (Betancourt & Giro-
lami 2013). The result of this modeling is simultaneous
inference on physically-relevant light curve parameters
describing individual objects in the sample, as well as
the parameter distribution among the population, regu-
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larized by the application of minimal (“weakly informa-
tive”) prior information.

In Section 2 we discuss the design and implementa-
tion of a hierarchical Bayesian model capable of simulta-
neously fitting large quantities of raw photometric data
from wide field transient surveys to infer the population
properties of the underlying SN sample. We test this
model with a sample dataset of Type IIP SNe from the
Pan-STARRS1 (PS1) survey (Section 3), previously pub-
lished in Sanders et al. (2014). We explore the results of
this test in Section 4, including comparison with infer-
ences drawn from traditional modeling based on fits to
individual light curves. We discuss the implications of
this methodology for future wide field transient surveys
in Section 5 and conclude in Section 6.

2. MODEL DESIGN

We have designed a hierarchical Bayesian generalized
linear model (GLM) to simultaneously describe the in-
dividual multi-band light curves of a set of optical tran-
sients, and the population distribution of their light curve
parameters. Due to the nature of the sample dataset we
discuss in Section 3, the non-linear link function of our
GLM is tailored for Type IIP SNe (see Section 2.1), but
the hierarchical structure of the model is generalizable to
any transient class.

Type IIP SNe are particularly apt for a hierarchical
modeling approach because their long lived light curves
reduce the likelihood of any individual object to have
fully identifiable light curve parameters. In particular,
because the plateau phase of the SN IIP light curve has a
duration (∼ 3 months) similar to the length of observing
seasons for typical pointings of ground based telescopes,
individual light curves are typically incomplete. The de-
tected SNe IIP have often exploded between observing
seasons, when their field is behind the sun, or their field
sets before the plateau phase has ended. As a result, in-
dividual objects in the data set do not have the temporal
coverage needed to fully identify their light curve param-
eters. Partial pooling among objects in the sample can
compensate, helping to identify unconstrained parameter
values for individual objects, while applying information
from well-constrained parameters of the individual light
curves to all other objects in the sample.

2.1. Light curve model

We have designed a physically motivated parameter-
ized model for the SN IIP light curve, composed of 5
piecewise power law and exponential segments. The
model is fully specified by a set of 12 independent param-
eters per optical filter and an explosion date (t0). These
parameters are 4 time durations (t1, tp, t2, td) defining
the knot locations of the segments, 5 rate parame-
ters describing the slope of each light curve segment
(α, β1, β2, βdN , βdC), a luminosity scale (Mp), a back-
ground level (Yb) for the photometric data, and an intrin-
sic scatter (V ) to encompass deviation from the model.
The light curve model and its primary parameters are
illustrated in Figure 1; a full mathematical description
of the light curve model is given in Sanders et al. (2014).

2.2. Hierarchical structure

We allow for partial pooling between the light curve pa-
rameters of this 5-component model using a linear hierar-
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Figure 1. Schematic illustration of the 5-component SN II light
curve model defined in Sanders et al. (2014). The gray vertical
lines denote the epochs of transition (tx) between the piecewise
components of the model. The background level (Yb) and turnover
fluxes (Mx) are marked and labeled (red points). The power law
(α) and exponential (βx) rate constant for each phase is labeled
adjacent to the light curve component.

chical structure. This structure is illustrated in Figure 2.
For the time, rate, luminosity scale, and intrinsic scatter
parameters of the model, this structure includes levels
for individual photometric filters, individual SNe-filter
combinations, and a top-level parameter; a 3-level struc-
ture. For the explosion date (t0) parameter, which is not
defined per-filter, we use a modified two-level structure.
The structure includes separate hyperprior distributions
for objects discovered within and between observing sea-
sons, which will have significantly different delay times
between explosion and the epoch of detection. We do
not adopt a hierarchical structure for the background
level Yb parameter, which should nominally be 0 except
in the presence of artifacts among the PS1 template im-
ages used in difference imaging.

In effect, this structure means that a single top level
value is drawn for each rate parameter; separate filter-
level rate parameters are drawn for each of the grizy
filters from the hyperprior distribution specified by the
top level value; and bottom level rate parameters for
each SN-filter combination are drawn from the hyper-
prior specified by the filter-level draw. In practice, this
“centered” multi-level parameterization is non-optimal,
because it introduces significant correlations between the
hyperparameters in the model that decrease the effi-
ciency of the MCMC sampler. Instead we use a modified,
“non-centered parameterization,” where correlations be-
tween hyperparameters are exchanged for correlations
between hyperparameters and data. This is a general
technique applicable for any distribution in the location-
scale family, and optimal when the data poorly iden-
tify the parameter values (Papaspiliopoulos et al. 2007;
Betancourt & Girolami 2013). We therefore adopt nor-
mal hyperprior distributions for all the location hyper-
parameters in our model, and half-cauchy distributions
for all scale parameters (including hyperprior width pa-
rameters; Gelman et al. 2008).
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The hierarchical modeling framework largely eschews
the specification of prior information, instead allowing
the model to set its own hyperprior distributions learned
from the data during fitting. We view this process, as
applied to transient optical light curve studies, as a form
of unsupervised machine learning. In effect, the model
is learning the shape and range of variation among light
curves within the transient class, and applying that in-
formation to optimally interpret individual light curves.

However, it is necessary to set prior distributions for
the top level hyperparameters, and we adopt weakly in-
formative priors except where needed to enforce regu-
larization of the light curve model. In particular, we
assign mean values for the normal prior distribution on
the filter-level parameter (thF,tp) controlling the plateau
phase rise time (tp) to specify the within filter variation
observed in Sanders et al. (2014). We do the same for
the filter-level priors controlling the plateau phase rise
and decay rates (β1 and β2). We specify the prior on
the explosion date hyperparameters with means of 1 and
100 days for the within- and between-season objects, re-
spectively. We use a restrictive cauchy(0.001) hyperprior
for the top-level intrinsic scatter parameter (Vh) to reg-
ularize its ability to dominate the likelihood evaluation.
We note that narrow hyperprior distributions are needed
here because the hierarchical model exponentially ampli-
fies variances. Prior information is therefore needed to
ensure a reasonable range of variation of the top level
parameters and to avoid numerical overflow during sam-
pling. The model then fits optimal values for each of
these hyperparameters given the likelihood for the data,
and these priors serve largely to regularize the results.

2.3. Stan implementation

To sample from this model posterior, we employ
the C++ library Stan (Stan Development Team 2013),
which implements the adaptive Hamiltonian Monte
Carlo (HMC) No-U-Turn Sampler (NUTS) of Hoffman
& Gelman (In press). HMC is advantageous for infer-
ence on high dimensional multi-level models, because
it capitalizes on the gradient of the posterior to effi-
ciently traverse the joint posterior despite the presence
of the highly correlated parameters inherent to hierarchi-
cal models (Betancourt & Girolami 2013). In practice,
HMC will achieve a significantly higher effective sample
size ratio (i.e. lower autocorrelation in the trace) than
traditional Gibbs samplers for models with highly cor-
related parameters (Betancourt & Girolami 2013; Stan
Development Team 2014).

NUTS operates in two phases; “adaptation” and “sam-
pling.” During adaptation, the algorithm automati-
cally tunes the temporal step size which controls the
discretization of the Hamiltonian (Hoffman & Gelman
2013). Additionally, the algorithm estimates a diago-
nal HMC mass matrix during adaptation, which effec-
tively scales the global step size to the optimal value for
each parameter (we do not configure Stan to estimate
the full, “dense” mass matrix given the significant ad-
ditional computational overhead). During the sampling
phase, the step size and mass matrix are fixed.

We use Stan to construct 32 independent MCMC
chains from the posterior distribution of the model.3

3 The full Stan code for our statistical model is discussed in

We have used the Harvard Faculty of Arts and Sciences
“Odyssey” Research Computing cluster to run these
chains in parallel, running for the cluster’s maximum job
execution time of 3 days per chain, for a total utilization
of 2, 304 cpu hrs. Given our total yield of 12651 samples,
this represents an average chain length of 395 samples
and an effective sampling rate of 5.49 samples per hour
per chain. For the purposes of convergence testing (Sec-
tion 4.1), we consider the full chains including adapta-
tion phase. For the purposes of light curve modeling, we
exclude the adaptation phase as well as the first 20 itera-
tions of the sampling phase, yielding 11265 total samples
from the approximate posterior stationary distribution.

The high computational cost of sampling from the
model posterior distribution is due to the small HMC
step size emerging from the NUTS adaptation. Figure 3
illustrates this effect, comparing the Hamiltonian dis-
cretization step size to the number of leapfrog steps per
iteration as the step size varies during NUTS adapta-
tion. As the step size decreases, the number of leapfrog
steps needed (the number of posterior calculations, and
therefore the execution time) grows exponentially. The
horizontal feature at the top of the this figure illustrates
saturation of the leapfrog algorithm tree depth, suggest-
ing that yet smaller step sizes may be needed to optimally
sample from the posterior. However, given the onerous
computation time required to iterate the NUTS algo-
rithm (which is not immediately parallelizable) at the
selected maximum tree depth (& 1 hour of CPU time at
the maximum tree depth of 16), we have elected not to
increase the maximum tree depth. As a result, the HMC
sampler could potentially become stuck in local minima
of the multi-dimensional posterior, biasing the resulting
samples away from the tails of the true joint posterior
distribution.

3. SAMPLE DATA

3.1. Pan-STARRS1 Optical Observations

Our Type IIP supernova light curve sample is selected
from four years of systematic Medium Deep Field ob-
servations by the Pan-STARRS1 (PS1) telescope, as de-
scribed in Sanders et al. (2014). PS1 is a high-etendue
wide-field imaging system, designed for dedicated sur-
vey observations and located on a mountaintop site in
the Hawaiian island chain. Observations are conducted
remotely, from the University of Hawaii–Institute for As-
tronomy Advanced Technology Research Center (ATRC)
in Pukalani. A complete description of the PS1 system,
both hardware and software, is provided by Kaiser et al.
(2002). The 1.8 m diameter primary mirror, 3.3◦ field
of view, and other PS1 optical design elements are de-
scribed in Hodapp et al. (2004); the array of 0.258˝pixel
detectors, and other attributes of the PS1 imager is de-
scribed in Tonry & Onaka (2009); and the survey de-
sign and execution strategy are described in Chambers
(in preparation). The PS1 Medium Deep Survey (MDS)
consists of 10 pencil beam fields observed with a typical
cadence of 3 d in each filter.

The PS1 observations are obtained through a set of five
broadband filters, which we refer to interchangeably as as
gP1, rP1, iP1, zP1, and yP1or simply grizy (Stubbs et al.
2010). MDS achieves a 5σ depth of ∼ 23.3 mag in griz

Appendix A.
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Figure 2. Directed Acyclic Graphical representation of the hierarchical structure of the multi-level light curve model parameters. The
color coding of the effects levels and the meanings of the bottom level parameters are given in the key at right. The bracketed numbers
indicate the dimensionality (in terms of the number of objects, NSN , the number of filters, NF , and the number of parameters in the time
and rate groups, NPt and NPr) of each parameter matrix.
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Figure 3. Illustration of the complexity of the HMC sampling
procedure. The figure compares the HMC Hamiltonian discretiza-
tion step size to the number of leapfrog steps (Nleapfrog) needed
per iteration. All samples from the combined MCMC chain, in-
cluding adaptation steps, are shown. The color coding shows the
NUTS treedepth (key at right). Vertically-correlated features in-
dicate adapted chains (proceeding with fixed step size).

filters, and ∼ 21.7 mag in the y-filter (with observations
taken near full moon). Photometry presented here is in
the “natural” PS1 system, m = 2.5 log(flux) + m′, with
a single zero-point adjustment m′ made in each band
to conform to the AB magnitude scale (Schlafly et al.
2012; Tonry et al. 2012; Magnier et al. 2013).4 We as-

4 The magnitudes quoted throughout this paper are in the AB
system, except where explicitly noted.

sume a systematic uncertainty of 1% for our PS1 obser-
vations due to the asymmetric PS1 point spread function
and uncertainty in the photometric zero-point calibration
(Tonry et al. 2012). The standard reduction, astrometric
solution, and stacking of the nightly images is done by
the Pan-STARRS1 IPP system (Magnier 2006; Magnier
et al. 2008), and the nightly MDS stacks are processed
through a frame subtraction analysis using the photpipe
image differencing pipeline (Rest et al. 2005; Scolnic et al.
2013).

We adopt the final spectroscopic SN IIP sample from
Sanders et al. (2014), including all objects sub-classified
using the Support Vector Machine machine learning clas-
sification method therein. This sample consists of 18,837
total photometric data points, including 5,056 robust de-
tections, for 76 SNe IIP in the grizy filters. We note that
the photometric observations which are not robust detec-
tions still play a significant role in the likelihood of our
model, serving to constrain the rise time and decay rate
parameters of the model, as well as directly identifying
the background parameter Yb. The particular transients
included in this sample and their properties are described
in Sanders et al. (2014).

3.2. Posterior Probability Convergence

The HMC algorithm quickly and efficiently converges
on a maximal value of the global posterior probability
for the model by identifying optimal values for each bot-
tom level light curve parameter for all the SNe and for
the hyperparmeters. Given that the global model for the
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values. A random subset of chains from the hierarchical model fit
are shown (different lines). The red vertical line marks the end of
the NUTS adaptation phase, at which point the HMC step size is
fixed. The probability shown on the y-axis is not normalized and
therefore has arbitrary units.
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Figure 5. Illustration of convergent HMC sampling for the well
identified bottom-level model parameters. Like Figure 4, but for
the bottom level parameter β2 for a randomly selected SN (r band).

PS1 SNe IIP sample has a total of 9,176 individual pa-
rameters, this fast convergence is a significant testament
to the efficiency of HMC as an optimization engine for
high-dimensional functions.

Figure 4 shows the posterior probability evolution of
the Markov chains as the NUTS sampler adapts and then
reaches the sampling phase. Chains typically converge
near the maximum achievable posterior probability dur-
ing our warmup period of only 30 iterations.

4. RESULTS

4.1. Sampling Characteristics and Fit Convergence

Figure 5 shows the MCMC trace for a well identified
bottom level parameter; the values drawn from the HMC
algorithm for the plateau phase decline rate (β2) of an
object (PS1-12cey) with sufficient r-band photometry to
constrain this phase of the light curve. The sampler
moves quickly in this dimension, with low autocorrelation
between samples, and the parameter is acceptably con-
vergent (with potential scale reduction factor R̂ = 1.14).

In contrast, Figure 6 shows the trace for a moderately
well identified top level parameter (rhP ), controlling the
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Figure 6. Illustration of slow moving HMC sampling for the
higher level model parameters. Like Figure 4, but for the hyperpa-
rameter rhP,β2 , the top level parameter controlling the β2 decay
rates.

global plateau phase decay rate across all filters. The
trace indicates that the sampler is moving more slowly
in this dimension, with significant autocorrelation be-
tween samples. This top level parameter has apparently
not yet converged (R̂ = 1.77). This suggests that ad-
ditional sampling is needed to achieve a desirable level
of convergence among some hyperparameters, but the
computational cost is prohibitive at this time; we dis-
cuss alternative methods for achieving convergence with
HMC in Section 5.

The origin of the convergence challenges facing the
HMC algorithm are illustrated in Figure 7. The Fig-
ure, showing a slice from the joint posterior distribu-
tion, illustrates the high correlation between the hier-
archically linked parameters in the model. In contrast,
Figure 8 shows a slice of the joint posterior along the
dimensions of the top level and filter-level hyperparam-
eters for the plateau phase time duration. Dependence
between these hyperparameters was obviated via selec-
tion of the non-centered parameterization (Section 2.2)
and, indeed, their marginal posteriors have very low cor-
relation.

4.2. Posterior Predictive Check Comparison

We validate the success of our model in describing the
light curve behavior of objects in our SN IIP sample using
posterior predictive checks (Gelman et al. 2013), com-
paring the distribution of luminosities predicted under
our fitted light curve model to the observed photomet-
ric data. Figure 9 shows a posterior predictive check
for PS1-10zu, whose poor temporal coverage illustrates
the strengths of the hierarchical model. The figure com-
pares the r-band light curve fit for this object to the
fit under the individual-level model presented in Sanders
et al. (2014), which uses an identical 5-component light
curve model, but does not make use of no partial pool-
ing between SNe. The hierarchical fit achieves signifi-
cantly greater constraints on the parameters describing
the rising phases of the SN, resulting in a much tighter
distribution of explosion dates and plateau durations (a
parameter critical for physical inference on the progeni-
tor star). The improvement is due to the strongly identi-
fied plateau duration hyperparameters (Section 4.3). In
the individual-level model, a weakly informative prior
distribution was established for this parameter based
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filter level mean and width (on a log scale) hyperparameters for
the plateau phase decay rate (rhSNF,β2 ).
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rameterization in removing dependency between hyperparameters.
Like Figure 7, but showing a slice along the dimensions of the top
level and filter-level hyperparameters for the plateau phase time
duration (thP,t2 and thP,t2,i).

on the theoretically predicted range of plateau duration
variation; in the multi-level model, the hyperparame-
ters are inferred from the data themselves, resulting in
much stronger prior information at the individual SN
level. That the fit to the later phases of the light curve,
where the data are strongly identifying, is indistinguish-
able from the fit obtained in the individual model is val-
idation of the unbiased performance of the hierarchical
model.

Figure 10 shows a comparison of fits for several ad-
ditional objects, illustrating features of the hierarchi-
cal modeling framework under different data scenarios,
which we describe here. PS1-11azd was observed only
during the rise and initial stages of the plateau phase.
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Figure 9. Comparison of posterior predictive checks between the
individual light curve fit of Sanders et al. (2014), above, and the hi-
erarchical model fit, below, for the SN PS1-10zu. Each plot shows
the r-band photometry for the SN (green points and errorbars),
which has detection only of the final phases of the light curve be-
cause the object exploded between observing seasons. The units of
luminosity, l, are described in (Sanders et al. 2014). The shaded
areas show the 1 and 2 σ confidence intervals for the posterior
predictive distribution of the 5-component light curve model (see
Section 4.2), and the solid black line shows the median of that
confidence interval. The red lines show a random subset of sam-
pled light curve models corresponding to parameter values from
the MCMC chain. The horizontal green bar shows the range fitted
for the zero-point luminosity offset.

The posterior predictive luminosity distribution of the
individual and hierarchical models are similar, but the
plateau decline phase duration (t2) parameter is much
more constrained in the hierarchical model (Figure 10 a).

PS1-12bku (Figure 10 b) was observed from explosion
through the final, radioactive decay-dominated phase.
Generally, this case confirms that, where the data is
strongly identifying, the hierarchical model produces fits
in agreement with the individual-level model. Interest-
ingly, for this object there is a r-band photometric obser-
vation with relatively high uncertainty at ∼ +80 days,
which introduces a degeneracy in the posterior—whether
this point should be assigned to the plateau or transition
phase of the light curve. The fit for this SN under the
hierarchical model looks similar to the individual-level
model fit, exploring both forks of the degeneracy. How-
ever, the two fits favor opposite sides of the fork. The
individual fit maximizes the likelihood of the r-band pho-
tometry for the object alone, placing the point on the
transition phase, while the hierarchical fit prefers the so-
lution where the point falls on the plateau. Because the
fork favored by the hierarchical model is more consis-
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tent with the modeled distribution of plateau durations
among SNe IIP (based on partial pooling from the other
objects in the sample), it is the more well justified solu-
tion.

In Figure 10 c, the hierarchical z-band fit for the SN
PS1-11ai is much more highly regularized to match the
shape of other z-band light curves than the individual
fit. This leads to significantly improved constraints on
the peak magnitude and plateau duration for this object.
For PS1-12wn (y-band; Figure 10 d), only 1 robust pho-
tometric detection is available, and all the photometry
is highly uncertain (δm ∼ 0.5 mag at 1σ). The individ-
ual light curve fit in this case is very poorly regularized,
obeying the peak magnitude suggested by the detection
and the limits suggested by the non-detections, but oth-
erwise has very poorly constrained light curve properties
like plateau duration and decline rate. The hierarchical
fit in this case is far superior in regularization, showing a
characteristic y-band SN IIP light curve shape matched
to the available photometry.

4.3. Population Parameter Distribution Characteristics

To further the investigation of SN IIP plateau dura-
tions from Sanders et al. (2014), in Figure 11 we com-
pare the plateau duration inferences from that project to
the duration distributions inferred from the hierarchical
model. The plateau duration distribution hyperprior in
the hierarchical model is a sum of the tp and t2 hyper-
priors. The hyperpriors include both location (e.g. thP )
and width (e.g. σ thP ) hyperparameters, so we visual-
ize the posterior distribution of hyperpriors by showing
multiple lognormal hyperpriors corresponding to random
draws of the hyperparameters. We focus on the r-band
durations here, and so include both the thP and thF hy-
perparameters.

The distribution of bottom-level plateau duration pa-
rameters for our hierarchical model agree well with the
individual light curve fits from Sanders et al. (2014).
Taking the median bottom level parameter from the
MCMC chain, the distribution of values from the hier-
archical model has a mean and standard deviation of
90 ± 6 days, compared to 92 ± 14 days for the individ-
ual model. Note that the variance in the hierarchical
model distribution is significantly lower than from the
individual fits, because partial pooling between objects
constrains the bottom level posteriors.

By directly modeling the underlying population of
transients, the hierarchical modeling framework allows us
to overcome potential biases in transient search method-
ology. In particular, although long duration SNe IIP are
less likely to be observed with full temporal coverage in
ground based transient searches (Section 2), we can es-
timate the fraction of unseen, long-duration transients
in the population from the hierarchical model posterior.
This product of the posterior distribution of the hierar-
chical model is constrained by both the observed char-
acteristics of objects in the sample, and characteristics
allowed by pre-explosion and late time non-detections
from the transient search at the same location.

Our hyperparameter posterior distributions suggest
there is a 60% probability that at least 10% of the un-
derlying population of SNe IIP have r-band plateau du-
rations longer than the bottom level parameter value for
any individual object in the sample (> 112 days). The

probability that at least 20% of objects fall above this
value is 30%. Among the sampled hyperprior distribu-
tions, the median of the population standard deviation
is 33 days. The standard deviation distribution has a
strong tail at larger values, shown in Figure 11. These re-
sults emphasize and support the finding of Sanders et al.
(2014), that the plateau duration distribution of SNe IIP
has significant variance.

5. DISCUSSION

The multi-level model developed and applied in this
paper points to a methodological framework for the in-
terpretation of SN light curves from the next generation
of wide-field transient searches, such as the Large Synop-
tic Survey Telescope (LSST; LSST Science Collaboration
et al. 2009). In the coming era, the volume of available
photometric data will increase dramatically, while the
human and observational resources for follow-up of indi-
vidual objects will not. In this regime, to capitalize on
the larger SN sample sizes afforded by these next genera-
tion searches, it will be critical to apply population level
light curve modeling. To do this, it is necessary to apply
analytical methods that are robust to data sparseness
and posterior non-identifiability for individual objects,
and computational methods that are capable of gener-
ating inferences from large datasets. The combination
of hierarchical Bayesian methodology and Hamiltonian
Monte Carlo methods explored in this work are natural
methods for addressing both these concerns.

This work also suggests future paths for improvement
of the Bayesian light curve modeling framework pre-
sented here. First, to permit applications to purely pho-
tometric datasets (where the SN classification and red-
shift are not known or poorly constrained), the model
must be generalized. The redshift can trivially be added
to the multi-level model as a vector of free parameters,
but it will introduce significant posterior correlations and
interactions that will need to be tested and may require
the assertion of significant prior information to aid identi-
fiability. Additional model components are needed to al-
low for application to multiple SN classes simultaneously.
This could be accomplished through categorical mixture
modeling with several different, physically-motivated SN
light curve prescriptions for each SN type or by using
a more generic, non-parametric, or continuously expand-
ing light curve model to allow fitting of diverse SN types.
Both of these solutions would support classification in-
ferences, by assessment of the categorical simplex pa-
rameter posteriors directly, or by a clustering analysis
of the continuous model expansion parameters, respec-
tively. Applications to transient searches delving to sig-
nificantly higher redshifts (and also the non-parametric
modeling approach) may require full three-dimensional
modeling of the SN spectral energy distribution evolu-
tion, rather than two-dimensional light curve modeling
in each filter, in order to permit K-corrections at all dis-
tances. Finally, incorporating host galaxy information
will be critical to producing purely-photometric infor-
mative inferences across SN classes. This should include
modeling of the distribution of host galaxy global proper-
ties per SN class to uncover and take advantage of differ-
ences in progenitor properties (see e.g. Kelly & Kirshner
2012; Sanders et al. 2012a; Foley & Mandel 2013; Lun-
nan et al. 2013; McCrum et al. 2014), as well as the line-
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Figure 10. Illustration of the advantages provided by the hierarchical model for fitting under different data coverage scenarios, relative to
individual light curve fitting. Like Figure 9, but on the absolute magnitude scale and for a variety of PS1 SNe and photometric filters. The
individual model fits are shown above, the with the corresponding hierarchical fits below. Triangles represent the locations of photometry
that are not robust detections; they are plotted at the y-axis position of the limiting PS1 magnitude of the filter, though the actual flux
and uncertainty of these points is used in the Bayesian likelihood calculation.

of-sight host galaxy extinction and reddening law (e.g.
Mandel et al. 2011).

Finally, we look to Riemannian manifold Hamiltonian
Monte Carlo (RMHMC; Betancourt 2013) techniques for
permitting posterior characterization in the future, in
the face of these additional modeling complexities. Com-
pared to traditional, Euclidian Hamiltonian Monte Carlo
(EHMC; as applied for this work), RHMC samplers ef-
ficiently explore highly correlated and high-dimensional
posterior functions by automatically adapting the Hamil-
tonian integration step size to a value optimal for local
conditions (Girolami & Calderhead 2011; Betancourt &
Girolami 2013). This capability would permit unbiased
sampling even amidst models with joint posterior distri-
butions with higher curvature than the multi-level model
examined here, such as a model including interactions be-
tween filter-level parameters or interactions between light
curve parameter groups (e.g. t-r interactions). Our at-
tempts to fit such a model with EHMC have not achieved
convergence within reasonable integration times, with
the high posterior curvature preventing the hyperparam-
eters from moving at a sufficient rate to produce conver-
gent chains. The addition of RHMC sampling capabil-
ities to Stan in the near future (Betancourt 2013) will
make these techniques accessible to astronomers in the
LSST era.

6. CONCLUSIONS

We have explored the use of Bayesian hierarchical mod-
eling and Hamiltonian Monte Carlo (HMC) to enable
population-level inference on multi-band transient light
curves from comprehensive analysis of optical photome-
try from wide field transient searches. The primary con-
clusions of this work are:

• While computational limits still challenge the im-
plementation of hierarchical models, due to the
high curvature in their joint posterior distribu-

tions, sufficient convergence is achieved in the bot-
tom level model parameters (Section 4.1) to en-
able their immediate application for transient light
curve studies.

• Comparisons between light curve posterior predic-
tive distributions from our hierarchical model fit
to the individual light curve fits of Sanders et al.
(2014) show strong agreement for well identified pa-
rameters, and show an advantage for hierarchical
models among poorly identified parameters (Sec-
tion 4.2). In particular, partial pooling of param-
eter information between transients supports im-
proved regularization of light curve shapes, and
supports model selection between partially degen-
erate light curve parameter scenarios.

• By directly modeling the underlying transient pop-
ulation, hierarchical models permit inference on the
occurrence of properties not observed within the
dataset (Section 4.3). This feature is of partic-
ular value in overcoming observational biases in-
duced by ground based transient searches, such
as the under-representation of long duration tran-
sients like some SNe IIP.

We have concluded with a discussion of future direc-
tions for this modeling (Section 5), including applications
to upcoming wide field transient searches, extensions to
the hierarchical model structure developed here, and ex-
panded capabilities to be enabled by the advent of Rie-
mannian manifold Hamiltonian Monte Carlo.

We thank K. Mandel for sage guidance and many help-
ful conversations; M. Brubaker, B. Carpenter, A. Gel-
man, and the Stan team for their excellent modeling lan-
guage and HMC sampler and for thoughtful feedback on
our model design; and the entire PS1 collaboration for
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Figure 11. Comparison of population level inferences on the SN IIP plateau duration distributions (in r-band) between the hierarchical
and individual model fits. Top: The dashed line shows the histogram of plateau durations measured in Sanders et al. (2014) using the
individual model (including only the objects with well constrained posteriors, as defined therein). The shaded area shows a histogram of
the bottom level plateau duration parameters under the hierarchical model (for all objects in the sample). Bottom: The solid lines show
draws of the plateau distribution hyperprior (a sum over the tp and t2 hyperpriors) from the hierarchical model fit, with the opacity scaled
to the probability of the draw under the posterior. The inset plots show the marginalized posterior distributions for the mean and standard
deviation of the summed hyperprior distributions (in rest frame days).

their monumental efforts towards the collection of the
SN IIP light curve dataset.

The Pan-STARRS1 Surveys (PS1) have been made
possible through contributions of the Institute for As-
tronomy, the University of Hawaii, the Pan-STARRS
Project Office, the Max-Planck Society and its partic-
ipating institutes, the Max Planck Institute for Astron-
omy, Heidelberg and the Max Planck Institute for Ex-
traterrestrial Physics, Garching, The Johns Hopkins Uni-
versity, Durham University, the University of Edinburgh,
Queen’s University Belfast, the Harvard-Smithsonian
Center for Astrophysics, the Las Cumbres Observatory
Global Telescope Network Incorporated, the National
Central University of Taiwan, the Space Telescope Sci-
ence Institute, the National Aeronautics and Space Ad-
ministration under Grant No. NNX08AR22G issued
through the Planetary Science Division of the NASA Sci-
ence Mission Directorate, the National Science Founda-
tion under Grant No. AST-1238877, the University of
Maryland, and Eotvos Lorand University (ELTE).

Support for this work was provided by the David and
Lucile Packard Foundation Fellowship for Science and
Engineering awarded to A.M.S. M.B. is supported under
EPSRC grant EP/J016934/1. Computations presented

in this paper were performed using the Odyssey super-
computing cluster supported by the FAS Science Division
Research Computing Group at Harvard University.
Facilities: PS1
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APPENDIX

APPENDIX A: HIERARCHICAL LIGHT CURVE STAN MODEL

Below we reproduce the full hierarchical model for the 5 component piecewise SN IIP light curves in the Stan modeling
language, as described in Section 2. The Stan model specification format is documented in the Stan Modeling Language
Users Guide and Reference Manual (Stan Development Team 2014).

The model takes the following data as input: N obs, the total number of photometric data points; N filt, the
number of photometric filters; t, a vector of MJD dates of the photometric observations; fL, a vector of luminosities
corresponding to the photometric observations (with units as described in Sanders et al. 2014); dfL a corresponding
vector of luminosity uncertainties; z the redshift; t0 mean an initial estimate of the explosion date (for initialization
and for centering the explosion date prior distribution); J a vector of integers specifying the filter ID of each pho-
tometric observation; Kcor N, a matrix of pre-computed K-corrections for each filter, in magnitudes with spacing of
1 day; fluxscale the zero-point of the luminosity unit system (fluxscale = 107 in the system we have employed);
and duringseason, a boolean value specifying whether the object exploded within or between observing seasons, for
selection of the explosion date prior distribution parameters. The calculation of the model light curve flux and appli-
cation of the K-correction values is performed in the transformed parameters section, and the prior and likelihood
calculations are performed in the model section. Certain vector-valued prior distribution parameters are specified in
the transformed data section for convenience. We note that the higher level parameters for the five different light
curve rates and four different phase durations are grouped together in vectors (e.g. rhP and thP for the top level, and
rhF and thF for the filter level, respectively) for convenience.

The Stan model is then compiled and run (Stan Development Team 2014) to yield MCMC samples from the
posterior distribution of light curve parameters. We configured the No-U-Turn Sampler to use fixed 0 initialization
of the parameter values, an adaptation phase of 30 steps, a maximum treedepth of 16, and otherwise employed the
default sampler parameters. We have used CmdStan version 2.2.05.

data {
int<lower=0> N_obs;
int<lower=0> N_SN;
int<lower=0> N_filt;
vector[N_obs] t;
vector[N_obs] fL;
vector[N_obs] dfL;
vector[N_SN] z;
vector[N_SN] t0_mean;
int<lower=1,upper=N_filt> J[N_obs];
int<lower=1,upper=N_SN> SNid[N_obs];
int<lower=0> Kcor_N;
real Kcor[N_SN, N_filt,Kcor_N];
real<lower=0> fluxscale;
vector<lower=0,upper=1>[N_SN] duringseason;

}
transformed data {

vector[N_filt] prior_t_hF[4];
vector[N_filt] prior_t_hF_s[4];
vector[N_filt] prior_r_hF[5];
vector[N_filt] prior_r_hF_s[5];
for (i in 1:N_filt) {

prior_t_hF[1,i] <- 0;
prior_t_hF_s[1,i] <- 0.1;

}
prior_t_hF[2,1] <- -1;
prior_t_hF[2,2] <- -0.5;
prior_t_hF[2,3] <- 0;
prior_t_hF[2,4] <- 0.5;
prior_t_hF[2,5] <- 1;
for (i in 1:N_filt) {prior_t_hF_s[2,i] <- 0.1;}
for (i in 1:N_filt) {

prior_t_hF[3,i] <- 0;
prior_t_hF_s[3,i] <- 0.1;

}
for (i in 1:N_filt) {

prior_t_hF[4,i] <- 0;
prior_t_hF_s[4,i] <- 0.1;

}
for (i in 1:N_filt) {

prior_r_hF[1,i] <- 0;
prior_r_hF_s[1,i] <- 0.1;

}
prior_r_hF[2,1] <- 2;
prior_r_hF[2,2] <- 1;

5 https://github.com/stan-dev/stan/releases/tag/v2.2.0

https://github.com/stan-dev/stan/releases/tag/v2.2.0
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prior_r_hF[2,3] <- 0;
prior_r_hF[2,4] <- -0.5;
prior_r_hF[2,5] <- -1;
for (i in 1:N_filt) {prior_r_hF_s[2,i] <- 0.1;}
prior_r_hF[3,1] <- 1;
prior_r_hF[3,2] <- 0.3;
prior_r_hF[3,3] <- 0;
prior_r_hF[3,4] <- -1;
prior_r_hF[3,5] <- -1;
for (i in 1:N_filt) {prior_r_hF_s[3,i] <- 0.1;}
for (i in 1:N_filt) {

prior_r_hF[4,i] <- 0;
prior_r_hF_s[4,i] <- 0.1;

}
for (i in 1:N_filt) {

prior_r_hF[5,i] <- 0;
prior_r_hF_s[5,i] <- 0.1;

}
}
parameters {

vector[4] t_hP;
vector<lower=0>[4] sig_t_hP;
vector[N_filt] t_hF[4];
vector<lower=0>[N_filt] sig_t_hF[4];
vector[N_SN * N_filt] t_hSNF[4];
vector<lower=0>[N_SN * N_filt] sig_t_hSNF[4];
vector[5] r_hP;
vector<lower=0>[5] sig_r_hP;
vector[N_filt] r_hF[5];
vector<lower=0>[5] sig_r_hF[5];
vector[N_SN * N_filt] r_hSNF[5];
vector<lower=0>[N_SN * N_filt] sig_r_hSNF[5];
real M_h;
real<lower=0> sig_M_h;
vector[N_filt] M_hF;
vector<lower=0>[N_filt] sig_M_hF;
vector[N_SN * N_filt] M_hSNF;
vector<lower=0>[N_SN * N_filt] sig_M_hSNF;
real Y_h;
real<lower=0> sig_Y_h;
vector[N_SN * N_filt] Y_hSNF;
vector<lower=0>[N_SN * N_filt] sig_Y_hSNF;
real t0s_h;
real<lower=0> sig_t0s_h;
vector[N_SN] t0s_hSN;
vector<lower=0>[N_SN] sig_t0s_hSN;
real t0l_h;
real<lower=0> sig_t0l_h;
vector[N_SN] t0l_hSN;
vector<lower=0>[N_SN] sig_t0l_hSN;
real<lower=0> V_h;
vector<lower=0>[N_filt] V_hF;
vector<lower=0>[N_SN * N_filt] V_hSNF;

}
transformed parameters {

vector[N_obs] mm;
vector[N_obs] dm;
vector<upper=0>[N_SN] pt0;
matrix<lower=0>[N_SN, N_filt] t1;
matrix<lower=0>[N_SN, N_filt] t2;
matrix<lower=0>[N_SN, N_filt] td;
matrix<lower=0>[N_SN, N_filt] tp;
matrix[N_SN, N_filt] lalpha;
matrix[N_SN, N_filt] lbeta1;
matrix[N_SN, N_filt] lbeta2;
matrix[N_SN, N_filt] lbetadN;
matrix[N_SN, N_filt] lbetadC;
matrix[N_SN, N_filt] Mp;
matrix[N_SN, N_filt] Yb;
matrix<lower=0>[N_SN, N_filt] V;
matrix<lower=0>[N_SN, N_filt] M1;
matrix<lower=0>[N_SN, N_filt] M2;
matrix<lower=0>[N_SN, N_filt] Md;
for (l in 1:N_SN) {

if (duringseason[l] == 1) {
pt0[l] <- -exp( t0s_h + sig_t0s_h * ( t0s_hSN[l] .* sig_t0s_hSN[l] ));

} else {
pt0[l] <- -exp( t0l_h + sig_t0l_h * ( t0l_hSN[l] .* sig_t0l_hSN[l] ));

}
}
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for (i in 1:N_filt) {

for (j in 1:N_SN) {
t1[j,i] <- exp( log(1) + t_hP[1] + sig_t_hP[1] * (

t_hF[1,i] * sig_t_hF[1,i]
+ sig_t_hSNF[1,(i-1)*N_SN+j] * t_hSNF[1,(i-1)*N_SN+j]

));

tp[j,i] <- exp( log(10) + t_hP[2] + sig_t_hP[2] * (
t_hF[2,i] * sig_t_hF[2,i]

+ sig_t_hSNF[2,(i-1)*N_SN+j] * t_hSNF[2,(i-1)*N_SN+j]
));

t2[j,i] <- exp( log(100) + t_hP[3] + sig_t_hP[3] * (
t_hF[3,i] * sig_t_hF[3,i]

+ sig_t_hSNF[3,(i-1)*N_SN+j] * t_hSNF[3,(i-1)*N_SN+j]
));

td[j,i] <- exp( log(10) + t_hP[4] + sig_t_hP[4] * (
t_hF[4,i] * sig_t_hF[4,i]

+ sig_t_hSNF[4,(i-1)*N_SN+j] * t_hSNF[4,(i-1)*N_SN+j]
));

lalpha[j,i] <- -1 + ( r_hP[1] + sig_r_hP[1] * (
r_hF[1,i] * sig_r_hF[1,i]

+ sig_r_hSNF[1,(i-1)*N_SN+j] * r_hSNF[1,(i-1)*N_SN+j]
));

lbeta1[j,i] <- -4 + ( r_hP[2] + sig_r_hP[2] * (
r_hF[2,i] * sig_r_hF[2,i]

+ sig_r_hSNF[2,(i-1)*N_SN+j] * r_hSNF[2,(i-1)*N_SN+j]
));

lbeta2[j,i] <- -4 + ( r_hP[3] + sig_r_hP[3] * (
r_hF[3,i] * sig_r_hF[3,i]

+ sig_r_hSNF[3,(i-1)*N_SN+j] * r_hSNF[3,(i-1)*N_SN+j]
));

lbetadN[j,i] <- -3 + ( r_hP[4] + sig_r_hP[4] * (
r_hF[4,i] * sig_r_hF[4,i]

+ sig_r_hSNF[4,(i-1)*N_SN+j] * r_hSNF[4,(i-1)*N_SN+j]
));

lbetadC[j,i] <- -5 + ( r_hP[5] + sig_r_hP[5] * (
r_hF[5,i] * sig_r_hF[5,i]

+ sig_r_hSNF[5,(i-1)*N_SN+j] * r_hSNF[5,(i-1)*N_SN+j]
));

Mp[j,i] <- exp(M_h + sig_M_h * (
M_hF[i] * sig_M_hF[i]

+ sig_M_hSNF[(i-1)*N_SN+j] * M_hSNF[(i-1)*N_SN+j]
));

Yb[j,i] <- Y_h + sig_Y_h * (Y_hSNF[(i-1)*N_SN+j] .* sig_Y_hSNF[(i-1)*N_SN+j]);
V[j,i] <- V_h * V_hF[i] * V_hSNF[(i-1)*N_SN+j];

}
}
M1 <- Mp ./ exp( exp(lbeta1) .* tp );
M2 <- Mp .* exp( -exp(lbeta2) .* t2 );
Md <- M2 .* exp( -exp(lbetadN) .* td );
for (n in 1:N_obs) {

real N_SNc;
int Kc_up;
int Kc_down;
real t_exp;
int j;
int k;
real mm_1;
real mm_2;
real mm_3;
real mm_4;
real mm_5;
real mm_6;
j <- J[n];
k <- SNid[n];
t_exp <- ( t[n] - (t0_mean[k] + pt0[k]) ) / (1 + z[k]);
if (t_exp<0) {

mm_1 <- Yb[k,j];
} else {

mm_1 <- 0;
}

if ((t_exp>=0) && (t_exp < t1[k,j])) {
mm_2 <- Yb[k,j] + M1[k,j] * pow(t_exp / t1[k,j] , exp(lalpha[k,j]));

} else {
mm_2 <- 0;

}
if ((t_exp >= t1[k,j]) && (t_exp < t1[k,j] + tp[k,j])) {

mm_3 <- Yb[k,j] + M1[k,j] * exp(exp(lbeta1[k,j]) * (t_exp - t1[k,j]));
} else {
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mm_3 <- 0;
}
if ((t_exp >= t1[k,j] + tp[k,j]) && (t_exp < t1[k,j] + tp[k,j] + t2[k,j])) {

mm_4 <- Yb[k,j] + Mp[k,j] * exp(-exp(lbeta2[k,j]) * (t_exp - t1[k,j] - tp[k,j]));
} else {

mm_4 <- 0;
}
if ((t_exp >= t1[k,j] + tp[k,j] + t2[k,j]) && (t_exp < t1[k,j] + tp[k,j] + t2[k,j] + td[k,j])) {

mm_5 <- Yb[k,j] + M2[k,j] * exp(-exp(lbetadN[k,j]) * (t_exp - t1[k,j] - tp[k,j] - t2[k,j]));
} else {

mm_5 <- 0;
}
if (t_exp >= t1[k,j] + tp[k,j] + t2[k,j] + td[k,j]) {

mm_6 <- Yb[k,j] + Md[k,j] * exp(-exp(lbetadC[k,j]) * (t_exp - t1[k,j] - tp[k,j] - t2[k,j] - td[k,j]));
} else {

mm_6 <- 0;
}
dm[n] <- sqrt(pow(dfL[n],2) + pow(V[k,j],2));
if (t_exp<0) {

N_SNc <- 0;
} else if (t_exp<Kcor_N-2){

Kc_down <- 0;
while ((Kc_down+1) < t_exp) {

Kc_down <- Kc_down + 1;
}
Kc_up <- Kc_down+1;
N_SNc <- Kcor[k,j,Kc_down+1] + (t_exp - floor(t_exp)) * (Kcor[k,j,Kc_up+1]-Kcor[k,j,Kc_down+1]);

} else {
N_SNc <- Kcor[k,j,Kcor_N];

}
mm[n] <- (mm_1+mm_2+mm_3+mm_4+mm_5+mm_6) / (pow(10, N_SNc/(-2.5)));

}
}
model {

t0s_h ~ normal(0, 0.5);
sig_t0s_h ~ cauchy(0, 0.1);
t0l_h ~ normal(log(100), 1);
sig_t0l_h ~ cauchy(0, 0.1);
V_h ~ cauchy(0, 0.001);
Y_h ~ normal(0, 0.1);
sig_Y_h ~ cauchy(0, 0.01);
M_h ~ normal(0, 1);
sig_M_h ~ cauchy(0, 0.1);
t_hP ~ normal(0,0.1);
sig_t_hP ~ cauchy(0, 0.1);
for (i in 1:4) {

t_hF[i] ~ normal(prior_t_hF[i], prior_t_hF_s[i]);
sig_t_hF[i] ~ cauchy(0, 0.1);
t_hSNF[i] ~ normal(0,1);
sig_t_hSNF[i] ~ cauchy(0, 0.1);

}
r_hP ~ normal(0,1);
sig_r_hP ~ cauchy(0, 0.1);
for (i in 1:5) {

r_hF[i] ~ normal(prior_r_hF[i], prior_r_hF_s[i]);
sig_r_hF[i] ~ cauchy(0, 0.1);
r_hSNF[i] ~ normal(0,1);
sig_r_hSNF[i] ~ cauchy(0, 0.1);

}
M_hF ~ normal(0,1);
sig_M_hF ~ cauchy(0, 0.1);
M_hSNF ~ normal(0,1);
sig_M_hSNF ~ cauchy(0, 0.1);
Y_hSNF ~ normal(0,1);
sig_Y_hSNF ~ cauchy(0, 0.1);
V_hF ~ cauchy(0, 0.1);
V_hSNF ~ cauchy(0, 0.1);
t0s_hSN ~ normal(0,1);
sig_t0s_hSN ~ cauchy(0, 0.1);
t0l_hSN ~ normal(0,1);
sig_t0l_hSN ~ cauchy(0, 0.1);
fL ~ normal(mm,dm);

}
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